Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/rsi/87/6/10.1063/1.4952953
1.
J. Maze, P. Stanwix, J. Hodges, S. Hong, J. Taylor, P. Cappellaro, L. Jiang, M. Dutt, E. Togan, A. Zibrov, A. Yacoby, R. Walsworth et al., Nature 455, 644 (2008).
http://dx.doi.org/10.1038/nature07279
2.
F. Dolde, H. Fedder, M. W. Doherty, T. Nöbauer, F. Rempp, G. Balasubramanian, T. Wolf, F. Reinhard, L. C. L. Hollenberg, F. Jelezko et al., Nat. Phys. 7, 459463 (2011).
http://dx.doi.org/10.1038/nphys1969
3.
D. M. Toyli, C. F. de las Casas, D. J. Christle, V. V. Dobrovitski, and D. D. Awschalom, PNAS 110, 84178421 (2013).
http://dx.doi.org/10.1073/pnas.1306825110
4.
V. M. Acosta, E. Bauch, M. P. Ledbetter, A. Waxman, L.-S. Bouchard, and D. Budker, Phys. Rev. Lett. 104 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.070801
5.
J. Tisler, T. Oeckinghaus, R. J. Söhr, R. Kolesov, R. Reuter, F. Reinhard, and J. Wrachtrup, Nano Lett. 13, 3152 (2013).
http://dx.doi.org/10.1021/nl401129m
6.
S. Sekatskii and V. Letokhov, JETP Lett. 63, 319 (1996).
http://dx.doi.org/10.1134/1.567024
7.
L. Thiel, D. Rohner, M. Ganzhorn, P. Appel, E. Neu, B. Müller, R. Kleiner, D. Koelle, and P. Maletinsky, “Quantitative nanoscale vortex imaging using a cryogenic quantum magnetometer,” Nat. Nanotech. (published online).
http://dx.doi.org/10.1038/nnano.2016.63
8.
M. Pelliccione, B. A. Myers, L. M. A. Pascal, A. Das, and A. C. Bleszynski Jayich, Phys. Rev. Appl. 2 (2014).
http://dx.doi.org/10.1103/PhysRevApplied.2.054014
9.
D. M. Toyli, D. J. Christle, A. Alkauskas, B. B. Buckley, C. G. Van de Walle, and D. D. Awschalom, Phys. Rev. X 2, 031001 (2012).
http://dx.doi.org/10.1103/PhysRevX.2.031001
10.
D. Le Sage, K. Arai, D. Glenn, S. DeVience, L. Pham, L. Rahn-Lee, M. Lukin, A. Yacoby, A. Komeili, and R. Walsworth, Nature 496, 486 (2013).
http://dx.doi.org/10.1038/nature12072
11.
G. Balasubramanian, I. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P. Hemmer, A. Krueger et al., Nature 455, 648 (2008).
http://dx.doi.org/10.1038/nature07278
12.
L. Rondin, J.-P. Tetienne, P. Spinicelli, C. Dal Savio, K. Karrai, G. Dantelle, A. Thiaville, S. Rohart, J.-F. Roch, and V. Jacques, Appl. Phys. Lett. 100, 153118 (2012).
http://dx.doi.org/10.1063/1.3703128
13.
L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky, and V. Jacques, Rep. Prog. Phys. 77, 056503 (2014).
http://dx.doi.org/10.1088/0034-4885/77/5/056503
14.
J.-P. Tetienne, T. Hingant, L. Martinez, S. Rohart, A. Thiaville, L. H. Diez, K. Garcia, J.-P. Adam, J.-V. Kim, J.-F. Roch et al., Nat. Commun. 6, 6733 (2015).
http://dx.doi.org/10.1038/ncomms7733
15.
C. Bradac, T. Gaebel, N. Naidoo, M. J. Sellars, J. Twamley, L. J. Brown, A. S. Barnard, T. Plakhotnik, A. V. Zvyagin, and J. R. Rabeau, Nat. Nanotechnol. 5, 345 (2010).
http://dx.doi.org/10.1038/NNANO.2010.56
16.
P. Maletinsky, S. Hong, M. Grinolds, B. Hausmann, M. Lukin, R. Walsworth, M. Loncar, and A. Yacoby, Nat. Nanotechnol. 7, 320 (2012).
http://dx.doi.org/10.1038/NNANO.2012.50
17.
See http://www.e6cvd.com/ for more information.
18.
See www.almax-easylab.com for more information.
19.
J. Hird and J. Field, Proc. R. Soc. Lond. A 460, 3547 (2004).
http://dx.doi.org/10.1098/rspa.2004.1339
20.
T. Schuelke and T. A. Grotjohn, Diamond Relat. Mater. 32, 17 (2013).
http://dx.doi.org/10.1016/j.diamond.2012.11.007
21.
P.-N. Volpe, P. Muret, F. Omnes, J. Achard, F. Silva, O. Brinza, and A. Gicquel, Diamond Relat. Mater. 18, 1205 (2009).
http://dx.doi.org/10.1016/j.diamond.2009.04.008
22.
I. Friel, S. Clewes, H. Dhillon, N. Perkins, D. Twitchen, and G. Scarsbrook, Diamond Relat. Mater. 18, 808 (2009).
http://dx.doi.org/10.1016/j.diamond.2009.01.013
23.
M. Naamoun, A. Tallaire, F. Silva, J. Achard, P. Doppelt, and A. Gicquel, Phys. Status Solidi A 209, 1715 (2012).
http://dx.doi.org/10.1002/pssa.201200069
24.
Y. Tao, J. Boss, B. Moores, and C. Degen, Nat. Commun. 5, 3638 (2014).
http://dx.doi.org/10.1038/ncomms4638
25.
Estimated using the software srim-the stopping range of ions in matter http://www.srim.org/.
26.
Y. Chu, N. de Leon, B. Shields, B. Hausmann, R. Evans, E. Togan, M. J. Burek, M. Markham, A. Stacey, A. Zibrov et al., Nano Lett. 14, 1982 (2014).
http://dx.doi.org/10.1021/nl404836p
27.
S. Pezzagna, B. Naydenov, F. Jelezko, J. Wrachtrup, and J. Meijer, New J. Phys. 12, 065017 (2010).
http://dx.doi.org/10.1088/1367-2630/12/6/065017
28.
R. J. Hoekstra, M. J. Kushner, V. Sukharev, and P. Schoenborn, J. Vac. Sci. Technol., B 16, 2102 (1998).
http://dx.doi.org/10.1116/1.590135
29.
T. Babinec, B. Hausmann, M. Khan, Y. Zhang, J. Maze, P. Hemmer, and M. Loncar, Nat. Nanotechnol. 5, 195 (2010).
http://dx.doi.org/10.1038/NNANO.2010.6
30.
E. Neu, P. Appel, M. Ganzhorn, J. Miguel-Sanchez, M. Lesik, V. Mille, V. Jacques, A. Tallaire, J. Achard, and P. Maletinsky, Appl. Phys. Lett. 104, 153108 (2014).
http://dx.doi.org/10.1063/1.4871580
31.
L. Childress, M. Dutt, J. Taylor, A. Zibrov, F. Jelezko, J. Wrachtrup, P. Hemmer, and M. Lukin, Science 314, 281 (2006).
http://dx.doi.org/10.1126/science.1131871
32.
J. Medford, Cywiski, C. Barthel, C. M. Marcus, M. P. Hanson, and A. C. Gossard, Phys. Rev. Lett. 108 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.086802
33.
J. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. Hemmer, A. Yacoby, R. Walsworth, and M. Lukin, Nat. Phys. 4, 810 (2008).
http://dx.doi.org/10.1038/nphys1075
34.
P. Appel, M. Ganzhorn, E. Neu, and P. Maletinsky, New J. Phys. 17, 112001 (2015).
http://dx.doi.org/10.1088/1367-2630/17/11/112001
35.
T. Klein, A. Laptev, A. Günther, P. Bender, A. Tschöpe, and R. Birringer, J. Appl. Phys. 106, 114301 (2009).
http://dx.doi.org/10.1063/1.3259365
36.
S. Schrittwieser, F. Ludwig, J. Dieckhoff, T. Andreas, A. Günther, M. Richter, A. Huetten, H. Brueckl, and J. Schotter, Small 10, 407411 (2013).
http://dx.doi.org/10.1002/smll.201300023
37.
A. Tschöpe, K. Birster, B. Trapp, P. Bender, and R. Birringer, J. Appl. Phys. 116, 184305 (2014).
http://dx.doi.org/10.1063/1.4901575
38.
T. Hingant, J.-P. Tetienne, L. J. Martínez, K. Garcia, D. Ravelosona, J.-F. Roch, and V. Jacques, Phys. Rev. Appl. 4, 014003 (2015).
http://dx.doi.org/10.1103/PhysRevApplied.4.014003
39.
J.-P. Tetienne, T. Hingant, J.-V. Kim, L. H. Diez, J.-P. Adam, K. Garcia, J.-F. Roch, S. Rohart, A. Thiaville, D. Ravelosona et al., Science 344, 1366 (2014).
http://dx.doi.org/10.1126/science.1250113
40.
R. S. Schoenfeld and W. Harneit, Phys. Rev. Lett. 106, 030802 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.030802
41.
T. Häberle, D. Schmid-Lorch, K. Karrai, F. Reinhard, and J. Wrachtrup, Phys. Rev. Lett 111 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.170801
42.
A. Günther, P. Bender, A. Tschöpe, and R. Birringer, J. Phys.: Condens. Matter 23, 325103 (2011).
http://dx.doi.org/10.1088/0953-8984/23/32/325103
43.
S. A. Momenzadeh, R. J. Stöhr, F. F. de Oliveira, A. Brunner, A. Denisenko, S. Yang, F. Reinhard, and J. Wrachtrup, Nano Lett. 15, 165 (2015).
http://dx.doi.org/10.1021/nl503326t
44.
Y. Romach, C. Müller, T. Unden, L. J. Rogers, T. Isoda, K. M. Itoh, M. Markham, A. Stacey, J. Meijer, S. Pezzagna et al., Phys. Rev. Lett. 114, 017601 (2015).
http://dx.doi.org/10.1103/PhysRevLett.114.017601
45.
B. A. Myers, A. Das, M. C. Dartiailh, K. Ohno, D. D. Awschalom, and A. C. Bleszynski Jayich, Phys. Rev. Lett. 113 (2014).
http://dx.doi.org/10.1103/PhysRevLett.113.027602
46.
N. Bar-Gill, L. Pham, C. Belthangady, D. Le Sage, P. Cappellaro, J. Maze, M. Lukin, A. Yacoby, and R. Walsworth, Nat. Commun. 3, 858 (2012).
http://dx.doi.org/10.1038/ncomms1856
47.
F. Fávaro de Oliveira, S. A. Momenzadeh, Y. Wang, M. Konuma, M. Markham, A. M. Edmonds, A. Denisenko, and J. Wrachtrup, Appl. Phys. Lett. 107, 073107 (2015).
http://dx.doi.org/10.1063/1.4929356
48.
S. Cui and E. L. Hu, Appl. Phys. Lett. 103, 051603 (2013).
http://dx.doi.org/10.1063/1.4817651
49.
C. Osterkamp, J. Scharpf, S. Pezzagna, J. Meijer, T. Diemant, R. Jürgen Behm, B. Naydenov, and F. Jelezko, Appl. Phys. Lett. 103, 193118 (2013).
http://dx.doi.org/10.1063/1.4829875
50.
I. Lovchinsky, A. O. Sushkov, E. Urbach, N. P. de Leon, S. Choi, K. De Greve, R. Evans, R. Gertner, E. Bersin, C. Muller et al., Science 351, 836841 (2016).
http://dx.doi.org/10.1126/science.aad8022
51.
K. Ohno, F. J. Heremans, L. C. Bassett, B. A. Myers, D. M. Toyli, A. C. B. Jayich, C. J. Palmstrom, and D. D. Awschalom, Appl. Phys. Lett. 101, 082413 (2012).
http://dx.doi.org/10.1063/1.4748280
52.
K. Ohno, F. Joseph Heremans, C. F. de las Casas, B. A. Myers, B. J. Alemn, A. C. Bleszynski Jayich, and D. D. Awschalom, Appl. Phys. Lett. 105, 052406 (2014).
http://dx.doi.org/10.1063/1.4890613
53.
J. Riedrich-Möller, S. Pezzagna, J. Meijer, C. Pauly, F. Mücklich, M. Markham, A. M. Edmonds, and C. Becher, Appl. Phys. Lett. 106, 221103 (2015).
http://dx.doi.org/10.1063/1.4922117
54.
Y. Tao and C. Degen, Adv. Mater. 25, 3962 (2013).
http://dx.doi.org/10.1002/adma.201301343
55.
H. J. Mamin, M. Kim, M. H. Sherwood, C. T. Rettner, K. Ohno, D. D. Awschalom, and D. Rugar, Science 339, 557 (2013).
http://dx.doi.org/10.1126/science.1231540
56.
A. Ajoy, U. Bissbort, M. D. Lukin, R. L. Walsworth, and P. Cappellaro, Phys. Rev. X 5 (2015).
http://dx.doi.org/10.1103/PhysRevX.5.011001
http://aip.metastore.ingenta.com/content/aip/journal/rsi/87/6/10.1063/1.4952953
Loading
/content/aip/journal/rsi/87/6/10.1063/1.4952953
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/87/6/10.1063/1.4952953
2016-06-07
2016-12-06

Abstract

The electronic spin of the nitrogen vacancy (NV) center in diamond forms an atomically sized, highly sensitive sensor for magnetic fields. To harness the full potential of individual NV centers for sensing with high sensitivity and nanoscale spatial resolution, NV centers have to be incorporated into scanning probe structures enabling controlled scanning in close proximity to the sample surface. Here, we present an optimized procedure to fabricate single-crystal, all-diamond scanning probes starting from commercially available diamond and show a highly efficient and robust approach for integrating these devices in a generic atomic force microscope. Our scanning probes consisting of a scanning nanopillar (200 nm diameter, 1–2 m length) on a thin (<1 m) cantilever structure enable efficient light extraction from diamond in combination with a high magnetic field sensitivity (). As a first application of our scanning probes, we image the magnetic stray field of a single Ni nanorod. We show that this stray field can be approximated by a single dipole and estimate the NV-to-sample distance to a few tens of nanometer, which sets the achievable resolution of our scanning probes.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/87/6/1.4952953.html;jsessionid=K27gsm31saF0CYSaWe5mV-b7.x-aip-live-06?itemId=/content/aip/journal/rsi/87/6/10.1063/1.4952953&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=rsi.aip.org/87/6/10.1063/1.4952953&pageURL=http://scitation.aip.org/content/aip/journal/rsi/87/6/10.1063/1.4952953'
Right1,Right2,Right3,