Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/rsi/87/7/10.1063/1.4959198
1.
T. Brabec and F. Krausz, Rev. Mod. Phys. 72, 545 (2000).
http://dx.doi.org/10.1103/RevModPhys.72.545
2.
D. Strickland and G. Mourou, Opt. Commun. 56, 219 (1985).
http://dx.doi.org/10.1016/0030-4018(85)90120-8
3.
A. Macchi, M. Borghesi, and M. Passoni, Rev. Mod. Phys. 85, 751 (2013).
http://dx.doi.org/10.1103/RevModPhys.85.751
4.
H. Daido, M. Nishiuchi, and A. S. Pirozhkov, Rep. Prog. Phys. 75, 056401 (2012).
http://dx.doi.org/10.1088/0034-4885/75/5/056401
5.
B. Dromey, S. Kar, M. Zepf, and P. Foster, Rev. Sci. Instrum. 75, 645 (2004).
http://dx.doi.org/10.1063/1.1646737
6.
G. Doumy, F. Quere, O. Gobert, M. Perdrix, P. Martin, P. Audebert, J. C. Gauthier, J. P. Geindre, and T. Wittmann, Phys. Rev. E 69, 026402 (2004).
http://dx.doi.org/10.1103/PhysRevE.69.026402
7.
A. Henig et al., Phys. Rev. Lett. 103, 245003 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.245003
8.
J. H. Bin et al., Phys. Rev. Lett. 115, 064801 (2015).
http://dx.doi.org/10.1103/PhysRevLett.115.064801
9.
P. R. Bolton et al., Phys. Med. 30, 255 (2014).
http://dx.doi.org/10.1016/j.ejmp.2013.09.002
10.
A. Macchi, A. Sgattoni, S. Sinigardi, M. Borghesi, and M. Passoni, Plasma Phys. Controlled Fusion 56, 039501 (2014).
http://dx.doi.org/10.1088/0741-3335/56/3/039501
11.
J. Schreiber, F. Bell, and Z. Najmudin, High Power Laser Sci. Eng. 2, e41 (2014).
http://dx.doi.org/10.1017/hpl.2014.46
12.
T. Burris-Mog et al., Phys. Rev. Spec. Top.–Accel. Beams 14, 121301 (2011).
http://dx.doi.org/10.1103/PhysRevSTAB.14.121301
13.
T. Toncian, M. Swantusch, M. Toncian, O. Willi, A. A. Andreev, and K. Y. Platonov, Phys. Plasmas 18, 043105 (2011).
http://dx.doi.org/10.1063/1.3574355
14.
R. A. Snavely et al., Phys. Rev. Lett. 85, 2945 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.2945
15.
A. J. Mackinnon, Y. Sentoku, P. K. Patel, D. W. Price, S. Hatchett, M. H. Key, C. Andersen, R. Snavely, and R. R. Freeman, Phys. Rev. Lett. 88, 215006 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.215006
16.
M. Kaluza, J. Schreiber, M. I. K. Santala, G. D. Tsakiris, K. Eidmann, J. Meyer-ter-Vehn, and K. J. Witte, Phys. Rev. Lett. 93, 045003 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.045003
17.
P. McKenna et al., Phys. Rev. E 70, 036405 (2004).
http://dx.doi.org/10.1103/PhysRevE.70.036405
18.
K. Zeil et al., New J. Phys. 12, 045015 (2010).
http://dx.doi.org/10.1088/1367-2630/12/4/045015
19.
S. Steinke et al., Contrib. Plasma Phys. 51, 444 (2011).
http://dx.doi.org/10.1002/ctpp.201110015
20.
S. A. Gaillard et al., Phys. Plasmas 18, 056710 (2011).
http://dx.doi.org/10.1063/1.3575624
21.
S. Kar et al., Phys. Rev. Lett. 109, 185006 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.185006
22.
D. Margarone et al., Phys. Rev. Lett. 109, 234801 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.234801
23.
K. Ogura et al., Opt. Lett. 37, 2868 (2012).
http://dx.doi.org/10.1364/OL.37.002868
24.
I. J. Kim et al., Phys. Rev. Lett. 111, 165003 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.165003
25.
F. Wagner et al., Phys. Rev. Lett. 116, 205002 (2016).
http://dx.doi.org/10.1103/PhysRevLett.116.205002
26.
B. M. Hegelich et al., Phys. Plasmas 12, 056314 (2005).
http://dx.doi.org/10.1063/1.1915350
27.
D. Jung et al., Phys. Plasmas 20, 083103 (2013).
http://dx.doi.org/10.1063/1.4817287
28.
S. Steinke et al., Phys. Rev. Spec. Top.–Accel. Beams 16, 011303 (2013).
http://dx.doi.org/10.1103/PhysRevSTAB.16.011303
29.
J. Braenzel, A. A. Andreev, K. Platonov, M. Klingsporn, L. Ehrentraut, W. Sandner, and M. Schnürer, Phys. Rev. Lett. 114, 124801 (2015).
http://dx.doi.org/10.1103/PhysRevLett.114.124801
30.
M. Nishiuchi et al., Phys. Plasmas 22, 033107 (2015).
http://dx.doi.org/10.1063/1.4913434
31.
S. Palaniyappan, C. Huang, D. C. Gautier, C. E. Hamilton, M. A. Santiago, C. Kreuzer, A. B. Sefkow, R. C. Shah, and J. C. Fernandez, Nat. Commun. 6, 10170 (2015).
http://dx.doi.org/10.1038/ncomms10170
32.
P. R. Bolton, Nucl. Instrum. Methods Phys. Res., Sect. A 809, 149 (2016).
http://dx.doi.org/10.1016/j.nima.2015.08.070
33.
J. S. Ng et al., Phys. Rev. Lett. 87, 244801 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.244801
34.
T. Toncian et al., Science 312, 410 (2006).
http://dx.doi.org/10.1126/science.1124412
35.
J. van Tilborg et al., Phys. Rev. Lett. 115, 184802 (2015).
http://dx.doi.org/10.1103/PhysRevLett.115.184802
36.
U. Masood, M. Bussmann, T. E. Cowan, W. Enghardt, L. Karsch, F. Kroll, U. Schramm, and J. Pawelke, Appl. Phys. B 117, 41 (2014).
http://dx.doi.org/10.1007/s00340-014-5796-z
37.
S. Kar et al., Nat. Commun. 7, 10792 (2016).
http://dx.doi.org/10.1038/ncomms10792
38.
S. Busold et al., Sci. Rep. 5, 12459 (2015).
http://dx.doi.org/10.1038/srep12459
39.
B. Le Garrec, S. Sebban, D. Margarone, M. Precek, S. Weber, O. Klimo, G. Korn, and B. Rus, Proc. SPIE 8962, 89620I (2014).
http://dx.doi.org/10.1117/12.2039165
40.
M. Schollmeier et al., Phys. Rev. Lett. 101, 055004 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.055004
41.
R. R. Wilson, Radiology 47, 487 (1946).
http://dx.doi.org/10.1148/47.5.487
42.
H. Owen, D. Holder, J. Alonso, and R. Mackay, Int. J. Mod. Phys. A 29, 1441002 (2014).
http://dx.doi.org/10.1142/S0217751X14410024
43.
S. Kraft et al., New J. Phys. 12, 085003 (2010).
http://dx.doi.org/10.1088/1367-2630/12/8/085003
44.
J. Bin et al., Appl. Phys. Lett. 101, 243701 (2012).
http://dx.doi.org/10.1063/1.4769372
45.
M. Durante, Br. J. Radiol. 87, 20130626 (2014).
http://dx.doi.org/10.1259/bjr.20130626
http://aip.metastore.ingenta.com/content/aip/journal/rsi/87/7/10.1063/1.4959198
Loading
/content/aip/journal/rsi/87/7/10.1063/1.4959198
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/87/7/10.1063/1.4959198
2016-07-28
2016-12-10

Abstract

An overview of progress and typical yields from intense laser-plasma acceleration of ions is presented. The evolution of laser-driven ion acceleration at relativistic intensities ushers prospects for improved functionality and diverse applications which can represent a varied assortment of ion beam requirements. This mandates the development of the integrated laser-driven ion accelerator system, the multiple components of which are described. Relevant high field laser-plasma science and design of controlled optimum pulsed laser irradiation on target are dominant single shot (pulse) considerations with aspects that are appropriate to the emerging petawatt era. The pulse energy scaling of maximum ion energies and typical differential spectra obtained over the past two decades provide guidance for continued advancement of laser-driven energetic ion sources and their meaningful applications.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/87/7/1.4959198.html;jsessionid=nc0vqgw5Fe0FmnB9GywAm4Ny.x-aip-live-06?itemId=/content/aip/journal/rsi/87/7/10.1063/1.4959198&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=rsi.aip.org/87/7/10.1063/1.4959198&pageURL=http://scitation.aip.org/content/aip/journal/rsi/87/7/10.1063/1.4959198'
Right1,Right2,Right3,