Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
J. Glazer and E. Tosatti, “Theory of spin-flip excitations across the ferromagnetic Stoner gap in electron energy loss,” Solid State Commun. 52, 905 (1984).
C. J. Bocchetta, E. Tosatti, and S. Yin, “Spin flip inelastic scattering in electron energy loss spectroscopy of a ferromagnetic metal,” Z. Phys. B: Condens. Matter 67, 89 (1987).
G. Vignale and K. S. Singwi, “Spin-flip electron-energy-loss spectroscopy in itinerant-electron ferromagnets: Collective modes versus Stoner excitations,” Phys. Rev. B 32, 2824 (1985).
J. Kirschner, “Direct and exchange contributions in inelastic scattering of spin-polarized electrons from iron,” Phys. Rev. Lett. 55, 973 (1985).
D. Venus and J. Kirschner, “Momentum dependence of the Stoner excitation spectrum of iron using spin-polarized electron-energy-loss spectroscopy,” Phys. Rev. B 37, 2199 (1988).
G. Lampel and C. Weisbuch, “Proposal for an efficient source of polarized photoelectrons from semiconductors,” Solid State Commun. 16, 877 (1975);
D. T. Pierce, F. Meier, and P. Zürcher, “Negative electron affinity GaAs: A new source of spin-polarized electrons,” Appl. Phys. Lett. 26, 670 (1975);
D. T. Pierce, R. J. Celotta, G.-C. Wang, W. N. Unertl, A. Galejs, C. E. Kuyatt, and S. R. Mielczarek, “GaAs spin polarized electron source,” Rev. Sci. Instrum. 51, 478 (1980);
T. Omori, Y. Kurihara, T. Nakanishi, H. Aoyagi, T. Baba, T. Furuya, K. Itoga, M. Mizuta, S. Nakamura, Y. Takeuchi, M. Tsubata, and M. Yoshioka, “Large enhancement of polarization observed by extracted electrons from the AlGaAs-GaAs superlattice,” Phys. Rev. Lett. 67, 3294 (1991);
T. Maruyama, E. L. Garwin, R. Prepost, G. H. Zapalac, J. S. Smith, and J. D. Walker, “Observation of strain-enhanced electron-spin polarization in photoemission from InGaAs,” Phys. Rev. Lett. 66, 2376 (1991);
T. Nakanashi, H. Aoyagi, H. Horinaka, Y. Kamiya, T. Kato, S. Nakamura, T. Saka, and M. Tsubata, “Large enhancement of spin polarization observed by photoelectrons from a strained GaAs layer,” Phys. Lett. A 158, 345 (1991);
T. Omori, Y. Kurihara, Y. Takeuchi, M. Yoshioka, T. Nakanashi, S. Okumi, M. Tsubata, M. Tawada, K. Togawa, Y. Tanimoto, C. Takahashi, T. Baba, and M. Mizuta, “Highly polarized electron source using InGaAs-GaAs strained-layer superlattice,” Jpn. J. Appl. Phys., Part 1 33, 5676 (1994).
G. A. Mulhollan, X. Zhang, F. B. Dunning, and G. K. Walters, “Inelastic spin-exchange scattering of electrons from paramagnetic metals,” Phys. Rev. B 41, 8122 (1990).
K.-P. Kämper, D. L. Abraham, and H. Hopster, “Spin-polarized electron-energy-loss spectroscopy on epitaxial fcc Co layers on Cu(001),” Phys. Rev. B 45, 14335 (1992).
B. Fromme, M. Schmitt, E. Kisker, A. Gorschlüter, and H. Merz, “Spin-flip low-energy electron-exchange scattering in NiO(100),” Phys. Rev. B 50, 1874 (1994).
T. Komesu, G. D. Waddill, and J. G. Tobin, “Spin-polarized electron energy loss spectroscopy on Fe(100) thin films grown on Ag(100),” J. Phys.: Condens. Matter 18, 8829 (2006).
J. Kirschner, D. Rebenstorff, and H. Ibach, “High-resolution spin-polarized electron-energy-loss-spectroscopy and the Stoner excitation spectrum in nickel,” Phys. Rev. Lett. 53, 698 (1984).
R. Saniz and S. P. Apell, “Interpretation of spin-polarized electron energy loss spectra,” Phys. Rev. B 63, 014409 (2000).
D. L. Abraham and H. Hopster, “Spin-polarized electron-energy-loss spectroscopy on Ni,” Phys. Rev. Lett. 62, 1157 (1989).
A. Winkelmann, M. Ellguth, C. Tusche, A. A. Ünal, J. Henk, and J. Kirschner, “Momentum-resolved photoelectron interference in crystal surface barrier scattering,” Phys. Rev. B 86, 085427 (2012).
C. Tusche, A. Krasyuk, and J. Kirschner, “Spin resolved band structure imaging with a high resolution momentum microscope,” Ultramicroscopy 159, 520 (2015).
Y. A. Mamaev, L. G. Gerchikov, Y. P. Yashin, D. A. Vasilyev, V. V. Kuzmichev, V. M. Ustinov, A. E. Zhukov, V. S. Mikhron, and A. P. Vasiliev, “Optimized photocathode for spin-polarized electron sources,” Appl. Phys. Lett. 93, 081114 (2008).
Atomic hydrogen source EFM-H, Focus GmbH, 2016,
A. V. Pradeep, A. Roy, P. S. Anil Kumar, and J. Kirschner, “Development of a spin polarized low energy electron diffraction system,” Rev. Sci. Instrum. 87, 023906 (2016).
Kh. Zakeri, T. R. F. Peixoto, Y. Zhang, J. Prokop, and J. Kirschner, “On the preparation of clean tungsten single crystals,” Surf. Sci. 604, L1L3 (2010).
J. Kirschner, H. Engelhard, and D. Hartung, “An evaporation source for ion beam assisted deposition in ultrahigh vacuum,” Rev. Sci. Instrum. 73, 3853 (2002).
T.-H. Chuang, Kh. Zakeri, A. Ernst, Y. Zhang, H. J. Qin, Y. Meng, Y.-J. Chen, and J. Kirschner, “Magnetic properties and magnon excitations in Fe(001) films grown on Ir(001),” Phys. Rev. B 89, 174404 (2014).
D. Vasilyev, C. Tusche, F. Giebels, H. Gollisch, R. Feder, and J. Kirschner, “Low-energy electron reflection from Au-passivated Ir(001) for application in imaging spin-filters,” J. Electron Spectrosc. Relat. Phenom. 199, 10 (2015).

Data & Media loading...


Article metrics loading...



We describe a new “complete” spin-polarized electron energy loss spectrometer comprising a spin-polarized primary electron source, an imaging electron analyzer, and a spin analyzer of the “spin-polarizing mirror” type. Unlike previous instruments, we have a high momentum resolution of less than 0.04 Å−1, at an energy resolution of 90-130 meV. Unlike all previous studies which reported rather broad featureless data in both energy and angle dependence, we find richly structured spectra depending sensitively on small changes of the primary energy, the kinetic energy after scattering, and of the angle of incidence. The key factor is the momentum resolution.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd