Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
H. Maier-Leibnitz, Nukleonik 8, 61 (1966);
in English language the topic has been discussed by, H. Maier-Leibnitz and T. Springer, Annu. Rev. Nucl. Sci. 16, 207 (1966).
B. Alefeld, M. Birr, and A. Heidemann, Naturwissenschaften 56, 410 (1969).
J. Fischer, N. Tsapatsaris, E. de Paula, and H. N. Bordallo, Eur. Phys. J.: Spec. Top. 223, 1831 (2014).
C. Stock, C. Broholm, Y. Zhao, F. Demmel, H. J. Kang, K. C. Rule, and C. Petrovic, Phys. Rev. Lett. 109, 167207 (2012).
E. Mamontov and K. W. Herwig, Rev. Sci. Instrum. 82, 10 (2011).
M. Birr, A. Heidemann, and B. Alefeld, Nucl. Instrum. Methods 95, 435 (1971).
H. N. Bordallo, B. Frick, H. Schober, and T. Seydel, J. Neutron Res. 16, 39 (2008).
B. Frick, E. Mamontov, L. van Eijck, and T. Seydel, Z. Phys. Chem. 224, 33 (2010).
A. Meyer, R. M. Dimeo, P. M. Gehring, and D. A. Neumann, Rev. Sci. Instrum. 74, 2759 (2003).
J. Wuttke, A. Budwig, M. Drochner, H. Kaemmerling, F.-J. Kayser, H. Kleines, V. Ossovyi, L. Carlos Pardo, M. Prager, D. Richter, G. J. Schneider, H. Schneider, and S. Staringer, Rev. Sci. Instrum. 83(7), 075109 (2012).¡!
N. R. de Souza, A. Klapproth, and G. N. Iles, Neutron News 27, 20 (2016).
M. T. F. Telling and K. H. Andersen, Phys. Chem. Chem. Phys. 7, 1255 (2005).
N. Takahashi, K. Shibata, T. J. Sato, Y. Kawakita, I. Tsukushi, N. Metoki, K. Nakajima, and M. Arai, Nucl. Instrum. Methods Phys. Res., Sect. A 600, 91 (2009).
M. Arai, R. Kajimoto, M. Nakamura, Y. Inamura, K. Nakajima, K. Shibata, N. Takahashi, J. Suzuki, S. Takata, T. Yamada, and S. Itoh, J. Phys. Soc. Jpn. 82, SA024 (2013).
N. Takahashi, K. Shibata, Y. Kawakita, K. Nakajima, Y. Inamura, T. Nakatani, H. Nakagawa, S. Fujiwara, T. J. Sato, I. Tsukushi, F. Mezei, D. A. Neumann, H. Mutka, and M. Arai, J. Phys. Soc. Jpn. 80, SB007 (2011).
C. J. Carlile et al., Technical Design Report for the European Spallation Source (European Spallation Source, 2013), p. 92, ISBN: 978-91-980173-2-8.
D. Wechsler, G. Zsigmond, F. Streffer, J. A. Stride, and F. Mezei, Phys. B 276, 71 (2000).
P. Willendrup, E. Farhi, and K. Lefmann, Phys. B 350, E735 (2004).
R. E. Lechner, R. Melzer, and J. Fitter, Phys. B 226, 86 (1996).
M. Prager and A. Heidemann, Chem. Rev. 97, 2933 (1997).
G. Ehlers, E. Mamontov, M. Zamponi, K. C. Kam, and J. S. Gardner, Phys. Rev. Lett. 102, 016405 (2009).
F. Demmel and K. H. Andersen, Meas. Sci. Technol. 19, 034021 (2008).
K. Shibata and Y. Kawakita, private communication, (2016), DNA instrument at JPARC, with regards to latest results related to the flux at the sample position and the capabilities of the chopper cascade during commissioning at 1MW.
T. Unruh, J. Neuhaus, and W. Petry, Nucl. Instrum. Methods Phys. Res., Sect. A 580, 1414 (2007).
P. P. Deen, A. Vickery, K. H. Andersen, and R. Hall-Wilton, EPJ Web Conf. 83, 03002 (2015).
F. Demmel, D. McPhail, J. Crawford, D. Maxwell, K. Pokhilchuk, V. Garcia-Sakai, S. Mukhopadyay, M. T. F. Telling, F. J. Bermejo, N. T. Skipper, and F. Fernandez-Alonso, EPJ Web Conf. 83, 03003 (2015).
D. Bhowmik, J. A. Pomposo, F. Juranyi, V. García-Sakai, M. Zamponi, Y. Su, A. Arbe, and J. Colmenero, Macromolecules 47, 304 (2014).
A. A. Vanwell, V. O. Dehaan, and D. F. R. Mildner, Nucl. Instrum. Methods Phys. Res., Sect. A 309, 284 (1991).
R. E. Lechner, in Advanced Neutron Sources ICANS X, Institute of Physics Conference Series, edited by D. K. Hyer (National Laboratory for High Energy Physics, 1989), pp. 843848.
R. E. Lechner, in Proceedings of International Collaboration on Advanced Neutron Sources, Tsukuba, Japan, 1990 (National Laboratory for High Energy Physics, 1990), p. 919.
L. Zanini, Baseline change of ESS cold moderator brightness, Internal Document No. ESS-0007486, 2015.
J. Kulda, private communication (2014).
N. Tsapatsaris, P. K. Willendrup, R. E. Lechner, and H. N. Bordallo, EPJ Web Conf. 83, 03015 (2015).
S. Yang, A. J. Ramirez-Cuesta, R. Newby, V. Garcia-Sakai, P. Manuel, S. K. Callear, S. I. Campbell, C. C. Tang, and M. Schröder, Nat. Chem. 7, 121 (2015).
N. Tsapatsaris, B. A. Kolesov, J. Fischer, E. V. Boldyreva, L. Daemen, J. Eckert, and H. N. Bordallo, Mol. Pharmaceutics 11(3), 1032 (2014).
A. R. Benetti, J. Jacobsen, B. Lehnhoff, N. C. R. Momsen, D. V. Okhrimenko, M. T. F. Telling, N. Kardjilov, M. Strobl, T. Seydel, I. Manke, and H. N. Bordallo, Sci. Rep. 5, 8972 (2015).
Y. Gerelli, M. T. Di Bari, S. Barbieri, F. Sonvico, P. Colombo, F. Natali, and A. Deriu, Soft Matter 6, 685 (2010).

Data & Media loading...


Article metrics loading...



In this work, we present the conceptual design of the backscattering time-of-flight spectrometer MIRACLES approved for construction at the long-pulse European Spallation Source (ESS). MIRACLES’s unparalleled combination of variable resolution, high flux, extended energy, and momentum transfer (0.2–6 Å−1) ranges will open new avenues for neutron backscattering spectroscopy. Its remarkable flexibility can be attributed to 3 key elements: the long-pulse time structure and low repetition rate of the ESS neutron source, the chopper cascade that tailors the moderator pulse in the primary part of the spectrometer, and the bent Si(111) analyzer crystals arranged in a near-backscattering geometry in the secondary part of the spectrometer. Analytical calculations combined with instrument Monte-Carlo simulations show that the instrument will provide a variable elastic energy resolution, δ(), between 2 and 32 eV, when using a wavelength of λ ≈ 6.267 Å (Si(111)-reflection), with an energy transfer range, , centered at the elastic line from −600 to +600 eV. In addition, when selecting λ ≈ 2.08 Å (i.e., the Si(333)-reflection), δ() can be relaxed to 300 eV and from about 10 meV in energy gain to ca −40 meV in energy loss. Finally, the dynamic wavelength range of MIRACLES, approximately 1.8 Å, can be shifted within the interval of 2–20 Å to allow the measurement of low-energy inelastic excitations.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd