Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
H. Daido, M. Nishiuchi, and A. S. Pirozhkov, “Review of laser-driven ion sources and their applications,” Rep. Prog. Phys. 75(5), 056401 (2012).
T. E. Cowan, J. Fuchs, H. Ruhl, A. Kemp, P. Audebert, M. Roth, R. Stephens, I. Barton, A. Blazevic, J. C. Gauthier, M. Geissel, M. Hegelich, J. Kaae, S. Karsch, G. P. Le Sage, S. Letzring, M. Manclossi, S. Meyroneinc, A. Newkirk, H. Pepin, N. Renard Legalloudec, and J. Ferna, “Ultralow emittance, multi-MeV proton beams from a laser virtual-cathode plasma accelerator,” Phys. Rev. Lett. 92(20), 204801 (2004).
S. V. Bulanov and V. S. Khoroshkov, “Feasibility of using laser ion accelerators in proton therapy,” Plasma Phys. Rep. 28(5), 453456 (2001).
M. Borghesi, A. Schiavi, D. H. Campbell, M. G. Haines, O. Willi, A. J. MacKinnon, L. A. Gizzi, M. Galimberti, R. J. Clarke, and H. Ruhl, “Proton imaging: A diagnostic for inertial confinement fusion/fast ignitor studies,” Plasma Phys. Controlled Fusion 43(12A), A267A276 (2001).
A. Yogo, K. Sato, M. Nishikino, M. Mori, T. Teshima, H. Numasaki, M. Murakami, Y. Demizu, S. Akagi, S. Nagayama, K. Ogura, A. Sagisaka, S. Orimo, M. Nishiuchi, A. S. Pirozhkov, M. Ikegami, M. Tampo, H. Sakaki, M. Suzuki, I. Daito, Y. Oishi, H. Sugiyama, H. Kiriyama, H. Okada, S. Kanazawa, S. Kondo, T. Shimomura, Y. Nakai, M. Tanoue, H. Sasao, D. Wakai, P. R. Bolton, and H. Daido, “Application of laser-accelerated protons to the demonstration of DNA double-strand breaks in human cancer cells,” Appl. Phys. Lett. 94(18), 181502 (2009).
S. D. Kraft, C. Richter, K. Zeil, M. Baumann, E. Beyreuther, S. Bock, M. Bussmann, T. E. Cowan, Y. Dammene, W. Enghardt, U. Helbig, L. Karsch, T. Kluge, L. Laschinsky, E. Lessmann, J. Metzkes, D. Naumburger, R. Sauerbrey, M. Schürer, M. Sobiella, J. Woithe, U. Schramm, and J. Pawelke, “Dose-dependent biological damage of tumour cells by laser-accelerated proton beams,” New J. Phys. 12(8), 85003 (2010).
S. Busold, A. Almomani, V. Bagnoud, W. Barth, S. Bedacht, A. Blažević, O. Boine-Frankenheim, C. Brabetz, T. Burris-Mog, T. E. Cowan, O. Deppert, M. Droba, H. Eickhoff, U. Eisenbarth, K. Harres, G. Hoffmeister, I. Hofmann, O. Jaeckel, R. Jaeger, M. Joost, S. Kraft, F. Kroll, M. Kaluza, O. Kester, Z. Lecz, T. Merz, F. Nürnberg, H. Al-Omari, A. Orzhekhovskaya, G. Paulus, J. Polz, U. Ratzinger, M. Roth, G. Schaumann, P. Schmidt, U. Schramm, G. Schreiber, D. Schumacher, T. Stoehlker, A. Tauschwitz, W. Vinzenz, F. Wagner, S. Yaramyshev, and B. Zielbauer, “Shaping laser accelerated ions for future applications—The LIGHT collaboration,” Nucl. Instrum. Methods Phys. Res., Sect. A 740, 9498 (2014).
K. Ogura, M. Nishiuchi, A. S. Pirozhkov, T. Tanimoto, A. Sagisaka, T. Zh. Esirkepov, M. Kando, T. Shizuma, T. Hayakawa, H. Kiriyama, T. Shimomura, S. Kondo, S. Kanazawa, Y. Nakai, H. Sasao, F. Sasao, Y. Fukuda, H. Sakaki, M. Kanasaki, A. Yogo, S. V. Bulanov, P. R. Bolton, and K. Kondo, “Proton acceleration to 40 MeV using a high intensity, high contrast optical parametric chirped-pulse amplification/Ti:sapphire hybrid laser system,” Opt. Lett. 37(14), 28682870 (2012).
J. S. Green, A. P. L. Robinson, N. Booth, D. C. Carroll, R. J. Dance, R. J. Gray, D. A. MacLellan, P. McKenna, C. D. Murphy, D. Rusby, and L. Wilson, “High efficiency proton beam generation through target thickness control in femtosecond laser-plasma interactions,” Appl. Phys. Lett. 104(21), 214101 (2014).
J. H. Bin, W. J. Ma, H. Y. Wang, M. J. V. Streeter, C. Kreuzer, D. Kiefer, M. Yeung, S. Cousens, P. S. Foster, B. Dromey, X. Q. Yan, R. Ramis, J. Meyer-ter Vehn, M. Zepf, and J. Schreiber, “Ion acceleration using relativistic pulse shaping in near-critical-density plasmas,” Phys. Rev. Lett. 115(6), 064801 (2015).
M. Roth, A. Blazevic, M. Geissel, T. Schlegel, T. E. Cowan, M. Allen, J. C. Gauthier, P. Audebert, J. Fuchs, J. Meyer-Ter-Vehn, M. Hegelich, S. Karsch, and A. Pukhov, “Energetic ions generated by laser pulses: A detailed study on target properties,” Phys. Rev. Spec. Top.–Accel. Beams 5(6), 3138 (2002).
K. Zeil, J. Metzkes, T. Kluge, M. Bussmann, T. E. Cowan, S. D. Kraft, R. Sauerbrey, and U. Schramm, “Direct observation of prompt pre-thermal laser ion sheath acceleration,” Nat. Commun. 3, 874 (2012).
D. Jung, R. Hörlein, D. Kiefer, S. Letzring, D. C. Gautier, U. Schramm, C. Hübsch, R. Öm, B. J. Albright, J. C. Fernandez, D. Habs, and B. M. Hegelich, “Development of a high resolution and high dispersion Thomson parabola,” Rev. Sci. Instrum. 82(1), 013306 (2011).
S. Reinhardt, W. Draxinger, J. Schreiber, and W. Assmann, “A pixel detector system for laser-accelerated ion detection,” J. Instrum. 8(03), P03008 (2013).
E. Breschi, M. Borghesi, M. Galimberti, D. Giulietti, L. A. Gizzi, and L. Romagnani, “A new algorithm for spectral and spatial reconstruction of proton beams from dosimetric measurements,” Nucl. Instrum. Methods Phys. Res., Sect. A 522, 190195 (2004).
F. Nürnberg, M. Schollmeier, E. Brambrink, A. Blažević, D. C. Carroll, K. Flippo, D. C. Gautier, M. Geibel, K. Harres, B. M. Hegelich, O. Lundh, K. Markey, P. McKenna, D. Neely, J. Schreiber, and M. Roth, “Radiochromic film imaging spectroscopy of laser-accelerated proton beams,” Rev. Sci. Instrum. 80(3), 033301 (2009).
M. M. Guenther, A. Britz, R. J. Clarke, K. Harres, G. Hoffmeister, F. Nürnberg, A. Otten, A. Pelka, M. Roth, and K. Vogt, “NAIS: Nuclear activation-based imaging spectroscopy,” Rev. Sci. Instrum. 84(7), 073305 (2013).
J. S. Green, M. Borghesi, C. M. Brenner, D. C. Carroll, N. P. Dover, P. S. Foster, P. Gallegos, S. Green, D. Kirby, K. J. Kirkby, P. McKenna, M. J. Merchant, Z. Najmudin, C. A. J. Palmer, D. Parker, R. Prasad, K. E. Quinn, P. P. Rajeev, M. P. Read, L. Romagnani, J. Schreiber, M. J. V. Streeter, O. Tresca, C.-G. Wahlström, M. Zepf, and D. Neely, “Scintillator-based ion beam profiler for diagnosing laser-accelerated ion beams,” Proc. SPIE 8079, 807919 (2011).
J. Metzkes, L. Karsch, S. D. Kraft, J. Pawelke, C. Richter, M. Schürer, M. Sobiella, N. Stiller, K. Zeil, and U. Schramm, “A scintillator-based online detector for the angularly resolved measurement of laser-accelerated proton spectra,” Rev. Sci. Instrum. 83, 123301 (2012).
M. J. Berger, J. S. Coursey, M. A. Zucker, and J. Chang, ESTAR, PSTAR, and ASTAR: Computer Programs for Calculating Stopping-Power and Range Tables for Electrons, Protons, and Helium Ions (National Institute of Standards and Technology, Gaithersburg, MD, 15 April 2016),
J. B. Birks, Theory and Practice of Scintillation Counting (Pergamon, New York, 1964).
K. Zeil, S. D. Kraft, S. Bock, M. Bussmann, T. E. Cowan, T. Kluge, J. Metzkes, T. Richter, R. Sauerbrey, and U. Schramm, “The scaling of proton energies in ultrashort pulse laser plasma acceleration,” New J. Phys. 12(4), 045015 (2010).
Spectra of heavier ions cannot be measured with these techniques because their range, e.g., in a stack of RCF, is too short to allow for energy resolution.
For detector characterization experiments at the 6 MV Van de Graaff tandetron accelerator at the Helmholtz-Zentrum Dresden–Rossendorf (HZDR) and first experiments at a LDIS, a prototype detector design with specifically adapted absorber thicknesses was used (Fig. 1(d)).
Proton cut-off energy between 10.6 MeV and 12 MeV.
Proton cut-off energy between 11 MeV and 13 MeV.
This absorber thickness refers to the absorber holes with 0 μm remaining absorber thickness in the absorber matrix, which were then covered by a layer of aluminum for light protection, as described above.

Data & Media loading...


Article metrics loading...



In this paper, a scintillator-based online beam profile detector for the characterization of laser-driven proton beams is presented. Using a pixelated matrix with varying absorber thicknesses, the proton beam is spatially resolved in two dimensions and simultaneously energy-resolved. A thin plastic scintillator placed behind the absorber and read out by a CCD camera is used as the active detector material. The spatial detector resolution reaches down to ∼4 mm and the detector can resolve proton beam profiles for up to 9 proton threshold energies. With these detector design parameters, the spatial characteristics of the proton distribution and its cut-off energy can be analyzed online and on-shot under vacuum conditions. The paper discusses the detector design, its characterization and calibration at a conventional proton source, as well as the first detector application at a laser-driven proton source.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd