Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/rsi/87/8/10.1063/1.4961577
1.
A. Razpet, P. Pelicon, Z. Rupnik, and M. Budnar, Nucl. Instrum. Methods Phys. Res., Sect. B 201, 535 (2003).
http://dx.doi.org/10.1016/S0168-583X(02)01881-5
2.
C. Kottler, M. Döbeli, F. Glaus, and M. Suter, Nucl. Instrum. Methods Phys. Res., Sect. B 248, 155 (2006).
http://dx.doi.org/10.1016/j.nimb.2006.02.013
3.
S. Giangrandi, T. Sajavaara, B. Brijs, K. Arstila, A. Vantomme, and W. Vandervorst, Nucl. Instrum. Methods Phys. Res., Sect. B 266, 5144 (2008).
http://dx.doi.org/10.1016/j.nimb.2008.08.018
4.
M. Laitinen, M. Rossi, J. Julin, and T. Sajavaara, Nucl. Instrum. Methods Phys. Res., Sect. B 337, 55 (2014).
http://dx.doi.org/10.1016/j.nimb.2014.07.001
5.
G. Dollinger, M. Boulouednine, A. Bergmaier, T. Faestermann, and C. M. Frey, Nucl. Instrum. Methods Phys. Res., Sect. B 118, 291 (1996).
http://dx.doi.org/10.1016/0168-583X(95)01469-1
6.
S. R. Walker, J. A. Davies, J. S. Forster, S. G. Wallace, and A. C. Kockelkoren, Nucl. Instrum. Meth. B 136-138, 707 (1998).
http://dx.doi.org/10.1016/S0168-583X(97)00886-0
7.
J. Julin, M. Laitinen, and T. Sajavaara, Nucl. Instrum. Methods Phys. Res., Sect. B 332, 271 (2014).
http://dx.doi.org/10.1016/j.nimb.2014.02.076
8.
Z. Siketić, N. Skukan, and I. Bogdanović Radović, Rev. Sci. Instrum. 86, 083301 (2015).
http://dx.doi.org/10.1063/1.4927605
9.
W. Assmann, Nucl. Instrum. Methods Phys. Res., Sect. B 64, 267 (1992).
http://dx.doi.org/10.1016/0168-583X(92)95478-A
10.
A. Bergmaier, G. Dollinger, and C. M. Frey, Nucl. Instrum. Methods Phys. Res., Sect. B 136-138, 638 (1998).
http://dx.doi.org/10.1016/S0168-583X(97)00877-X
11.
H. Timmers, T. R. Ophel, and R. G. Elliman, Nucl. Instrum. Methods Phys. Res., Sect. B 156, 236 (1999).
http://dx.doi.org/10.1016/S0168-583X(99)00249-9
12.
A. Göök, F.-J. Hambsch, A. Oberstedt, and S. Oberstedt, Nucl. Instrum. Methods Phys. Res., Sect. A 664, 289 (2012).
http://dx.doi.org/10.1016/j.nima.2011.10.052
13.
K. Arstila, T. Sajavaara, and J. Keinonen, Nucl. Instrum. Methods Phys. Res., Sect. B 174, 163 (2001).
http://dx.doi.org/10.1016/S0168-583X(00)00435-3
14.
N. Barradas, K. Arstila, G. Battistig, M. Bianconi, N. Dytlewski, C. Jeynes, E. Kótai, G. Lulli, M. Mayer, E. Rauhala, E. Szilágyi, and M. Thompson, Nucl. Instrum. Methods Phys. Res., Sect. B 262, 281 (2007).
http://dx.doi.org/10.1016/j.nimb.2007.05.018
15.
J. F. Ziegler, M. D. Ziegler, and J. Biersack, Nucl. Instrum. Methods Phys. Res., Sect. B 268, 1818 (2010).
http://dx.doi.org/10.1016/j.nimb.2010.02.091
16.
Z. He, Nucl. Instrum. Methods Phys. Res., Sect. A 463, 250 (2001).
http://dx.doi.org/10.1016/S0168-9002(01)00223-6
17.
D. C. Meeker, Finite Element Method Magnetics, 2016, http://www.femm.info/.
18.
ICRU, “Average energy required to produce an ion pair,” ICRU Report 31 (ICRU, Washington, DC, USA, 1979).
19.
J. M. Valentine and S. C. Curran, Rep. Prog. Phys. 21, 1 (1958).
http://dx.doi.org/10.1088/0034-4885/21/1/301
20.
M. Chemtob, B. Lavigne, J. Chary, V. D. Nguyen, N. Parmentier, J. P. Noel, and C. Fiche, Phys. Med. Biol. 22, 208 (1977).
http://dx.doi.org/10.1088/0031-9155/22/2/002
21.
U. Fano, Phys. Rev. 70, 44 (1946).
http://dx.doi.org/10.1103/PhysRev.70.44
22.
G. Schultz and J. Gresser, Nucl. Instrum. Methods 151, 413 (1978).
http://dx.doi.org/10.1016/0029-554X(78)90151-9
23.
R. Veenhof, Nucl. Instrum. Methods Phys. Res., Sect. A 419, 726 (1998).
http://dx.doi.org/10.1016/S0168-9002(98)00851-1
24.
J. Julin and T. Sajavaara, Nucl. Instrum. Methods Phys. Res., Sect. B 366, 179 (2016).
http://dx.doi.org/10.1016/j.nimb.2015.10.066
25.
V. T. Jordanov and G. F. Knoll, Nucl. Instrum. Methods Phys. Res., Sect. B 345, 337 (1994).
http://dx.doi.org/10.1016/0168-9002(94)91011-1
26.
A. N. James, K. A. Connell, and R. A. Cunningham, Nucl. Instrum. Methods Phys. Res., Sect. B 53, 349 (1991).
http://dx.doi.org/10.1016/0168-583X(91)95625-N
http://aip.metastore.ingenta.com/content/aip/journal/rsi/87/8/10.1063/1.4961577
Loading
/content/aip/journal/rsi/87/8/10.1063/1.4961577
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/87/8/10.1063/1.4961577
2016-08-30
2016-09-25

Abstract

The performance of a time-of-flight spectrometer consisting of two timing detectors and an ionization chamber energy detector has been studied using Monte Carlo simulations for the recoil creation and ion transport in the sample and detectors. The ionization chamber pulses have been calculated using Shockley-Ramo theorem and the pulse processing of a digitizing data acquisition setup has been modeled. Complete time-of-flight–energy histograms were simulated under realistic experimental conditions. The simulations were used to study instrumentation related effects in coincidence timing and position sensitivity, such as background in time-of-flight–energy histograms. Corresponding measurements were made and simulated results are compared with data collected using the digitizing setup.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/87/8/1.4961577.html;jsessionid=xf6MwPAZdjB2iEwEnjN4OZJN.x-aip-live-02?itemId=/content/aip/journal/rsi/87/8/10.1063/1.4961577&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=rsi.aip.org/87/8/10.1063/1.4961577&pageURL=http://scitation.aip.org/content/aip/journal/rsi/87/8/10.1063/1.4961577'
Right1,Right2,Right3,