Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/rsi/87/8/10.1063/1.4961645
1.
G. Hans, T. Peter, C. Bo, and J. K. Nielsen, Geophys. Res. Lett. 42(2), 510, doi:10.1002/2014gl062596 (2015).
http://dx.doi.org/10.1002/2014gl062596
2.
J. R. Toggweiler and R. Joellen, Nature 451(7176), 286 (2008).
http://dx.doi.org/10.1038/nature06590
3.
Z. A. Holden, J. T. Abatzoglou, C. H. Luce, and L. S. Baggett, Agric. For. Meteorol. 151(8), 1066 (2011).
http://dx.doi.org/10.1016/j.agrformet.2011.03.011
4.
J. Balanya, J. M. Oller, R. B. Huey, G. W. Gilchrist, and L. Serra, Science 313(5794), 1773 (2006).
http://dx.doi.org/10.1126/science.1131002
5.
M. E. Dillon, W. George, and R. B. Huey, Nature 467(7316), 704 (2010).
http://dx.doi.org/10.1038/nature09407
6.
A. Haines, A. J. Mcmichael, S. Kovats, and M. Saunders, BMJ Clin. Res. 316(7143), 1530 (1998).
http://dx.doi.org/10.1136/bmj.316.7143.1530
7.
R. G. Harrison, Q. J. R. Meteorol. Soc. 137(655), 402 (2011).
http://dx.doi.org/10.1002/qj.745
8.
R. G. Harrison and C. R. Wood, Q. J. R. Meteorol. Soc. 138(665), 1114 (2012).
http://dx.doi.org/10.1002/qj.985
9.
X. Lin, K. G. Hubbard, and G. E. Meyer, J. Atmos. Oceanic Technol. 18(3), 329 (2010).
http://dx.doi.org/10.1175/1520-0426(2001)018<0329:ACOCUT>2.0.CO;2
10.
S. J. Richardson, F. V. Brock, S. R. Semmer, and C. Jirak, J. Atmos. Oceanic Technol. 16(11), 1862 (1999).
http://dx.doi.org/10.1175/1520-0426(1999)016<1862:MEAWMR>2.0.CO;2
11.
X. Lin, K. G. Hubbard, and E. A. Walter-Shea, Trans. ASAE 44(5), 1299 (2001).
12.
M. Fuchs and C. B. Tanner, J. Appl. Meteorol. 4(4), 544 (1965).
http://dx.doi.org/10.1175/1520-0450(1965)004<0544:RSFATT>2.0.CO;2
13.
K. G. Hubbard, X. Lin, and E. A. Walter-Shea, J. Atmos. Oceanic Technol. 18(6), 851 (2001).
http://dx.doi.org/10.1175/1520-0426(2001)018<0851:TEOTAM>2.0.CO;2
14.
S. P. Anderson and M. F. Baumgartner, J. Atmos. Oceanic Technol. 15(15), 157 (1998).
http://dx.doi.org/10.1175/1520-0426(1998)015<0157:RHEINV>2.0.CO;2
15.
R. Nakamura and L. Mahrt, J. Atmos. Oceanic Technol. 22(7), 1046 (2005).
http://dx.doi.org/10.1175/JTECH1762.1
16.
M. Mauder, R. L. Desjardins, Z. Gao, and R. V. Haarlem, J. Atmos. Oceanic Technol. 25(11), 2145 (2008).
http://dx.doi.org/10.1175/2008JTECHA1046.1
17.
K. G. Hubbard and X. Lin, Geophys. Res. Lett. 29(10), 67, doi:10.1029/2001GL013191 (2002).
http://dx.doi.org/10.1029/2001GL013191
18.
J. A. Hubbart, J. Nat. Environ. Sci. 2(2), 9 (2011).
19.
M. C. Perry, M. J. Prior, and D. E. Parker, Int. J. Climatol. 27(2), 267 (2007).
http://dx.doi.org/10.1002/joc.1381
20.
E. Erell, V. Leal, and E. Maldonado, Boundary-Layer Meteorol. 114(1), 205 (2005).
http://dx.doi.org/10.1007/s10546-004-8946-8
21.
C. Georges and G. Kaser, J. Geophys. Res. 107(D24), ACL 15-1, doi:10.1029/2002jd002155 (2010).
http://dx.doi.org/10.1029/2002jd002155
22.
G. Lopardo, F. Bertiglia, S. Curci, G. Roggero, and A. Merlone, Int. J. Climatol. 34(4), 1297 (2014).
http://dx.doi.org/10.1002/joc.3765
23.
C. K. Thomas and A. R. Smoot, J. Atmos. Oceanic Technol. 30(30), 526 (2013).
http://dx.doi.org/10.1175/JTECH-D-12-00044.1
24.
R. G. Quayle, D. R. Easterling, T. R. Karl, and P. Y. Hughes, Bull. Am. Meteorol. Soc. 72(11), 1718 (1991).
http://dx.doi.org/10.1175/1520-0477(1991)072<1718:EORTCI>2.0.CO;2
25.
F. V. Brock, K. C. Crawford, R. L. Elliott, G. W. Cuperus, S. J. Stadler, H. L. Johnson, and M. D. Eilts, J. Atmos. Oceanic Technol. 12(12), 5 (1995).
http://dx.doi.org/10.1175/1520-0426(1995)012<0005:TOMATO>2.0.CO;2
26.
V. Raghavan, S. E. Whitney, R. J. Ebmeier, N. V. Padhye, M. Nelson, H. J. Viljoen, and G. Gogos, Rev. Sci. Instrum. 77(9), 094301 (2006).
http://dx.doi.org/10.1063/1.2338283
27.
H. Liu, X. Wu, and M. Tan, J. Theor. App. Mech-Pol. 51(3), 649 (2013).
28.
R. Kurzeja, Boundary-Layer Meteorol. 134(1), 181 (2010).
http://dx.doi.org/10.1007/s10546-009-9430-2
29.
S. J. Richardson, J. Atmos. Oceanic Technol. 12(4), 951 (1995).
http://dx.doi.org/10.1175/1520-0426(1995)012<0951:ATARHC>2.0.CO;2
http://aip.metastore.ingenta.com/content/aip/journal/rsi/87/8/10.1063/1.4961645
Loading
/content/aip/journal/rsi/87/8/10.1063/1.4961645
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/87/8/10.1063/1.4961645
2016-08-29
2016-12-11

Abstract

Due to the solar radiation effect, current air temperature sensors inside a thermometer screen or radiation shield may produce measurement errors that are 0.8 °C or higher. To improve the observation accuracy, an aspirated temperature measurement platform is designed. A computational fluid dynamics (CFD) method is implemented to analyze and calculate the radiation error of the aspirated temperature measurement platform under various environmental conditions. Then, a radiation error correction equation is obtained by fitting the CFD results using a genetic algorithm (GA) method. In order to verify the performance of the temperature sensor, the aspirated temperature measurement platform, temperature sensors with a naturally ventilated radiation shield, and a thermometer screen are characterized in the same environment to conduct the intercomparison. The average radiation errors of the sensors in the naturally ventilated radiation shield and the thermometer screen are 0.44 °C and 0.25 °C, respectively. In contrast, the radiation error of the aspirated temperature measurement platform is as low as 0.05 °C. This aspirated temperature sensor allows the radiation error to be reduced by approximately 88.6% compared to the naturally ventilated radiation shield, and allows the error to be reduced by a percentage of approximately 80% compared to the thermometer screen. The mean absolute error and root mean square error between the correction equation and experimental results are 0.032 °C and 0.036 °C, respectively, which demonstrates the accuracy of the CFD and GA methods proposed in this research.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/87/8/1.4961645.html;jsessionid=HGRnYtiPef3G6-g-HdQ96FuE.x-aip-live-02?itemId=/content/aip/journal/rsi/87/8/10.1063/1.4961645&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=rsi.aip.org/87/8/10.1063/1.4961645&pageURL=http://scitation.aip.org/content/aip/journal/rsi/87/8/10.1063/1.4961645'
Right1,Right2,Right3,