Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
J. W. Mather, Phys. Fluids 8, 366 (1964).
N. V. Filipov, T. I. Filipova, and V. P. Vinogradov, IAEA Nucl. Fusion Suppl. 2, 577 (1962).
M. Mathuthu, T. G. Zengeni, and A. V. Gholap, IEEE Trans. Plasma Sci. 25(6), 1382 (1997).
G. Vourvopoulos and P. C. Womble, Talanta 54, 459 (2001).
V. Gribkov, A. Dubrovsky, L. Karpinski, R. Miklaszewski, M. Paduch, M. Scholz, P. Strzyzewski, and K. Tomaszewski, AIP Conf. Proc. 875, 415 (2006).
D. Ravenscroft, D. Bulmer, F. Coensgen, J. Doggett, A. Molvik, P. Souza, L. Summers, and V. Williamson, Proc. IEEE/NPSS Symp. Fusion Eng. 2, 1064 (1991).
F. N. Beg, K. Krushelnick, C. Gower, S. Torn, A. E. Dangor, A. Howard, T. Sumner, A. Bewick, V. Lebedenko, J. Dawson, D. Davidge, M. Joshi, and J. R. Gillespie, Appl. Phys. Lett. 80, 3009 (2002).
M. Sumini, D. Mostacci, F. Rocchi, M. Frignani, A. Tartari, E. Angeli, D. Galaverni, U. Coli, B. Ascione, and G. Cucchi, Nucl. Instrum. Methods Phys. Res., Sect. A 562, 1068 (2006).
V. Benzi, F. Mezzetti, F. Rocchi, and M. Sumini, Nucl. Instrum. Methods Phys. Res., Sect. B 213, 611 (2004).
J. Pouzo, M. Milanese, and R. Moroso, AIP Conf. Proc. 669, 277 (2003).
T. E. Mason, D. Abernathy, J. Ankner, A. Ekkebus, G. Granroth, M. Hagen, K. Herwig, C. Hoffmann, C. Horak, F. Klose, S. Miller, J. Neuefeind, C. Tulk, and X. L. Wang, AIP Conf. Proc. 773, 21 (2005).
D. L. Chichester and J. D. Simpson, Ind. Phys. 9, 22 (2004).
B. S. Tomar, T. C. Kaushik, S. Andola, R. Niranjan, R. K. Rout, A. Kumar, D. B. Paranjape, P. Kumar, K. L. Ramakumar, S. C. Gupta, and R. K. Sinha, Nucl. Instrum. Methods Phys. Res., Sect. A 703, 11 (2013).
See http://www for information on Low-pressure hydrogen-filled thyratron switch.
V. A. Gribkov, M. Scholz, V. D. Bochkov, A. V. Dubrovsky, R. Miklaszewski, L. Karpinski, P. Strzyzewski, P. Lee, and S. Lee, J. Phys. D: Appl. Phys. 37, 2107 (2004).
A. H. Bushnell, in Proceeding of 25th International Power Modulator Symposium and High Voltage Workshop, Hollywood, CA (IEEE, 2002), p. 290.
R. Verma, R. S. Rawat, P. Lee, A. Tuck Lee Tan, H. Shariff, J. Y. Goh, S. V. Springham, A. Talebitaher, U. Ilyas, and A. Shyam, IEEE Trans. Plasma Sci. 40(12), 3280 (2012).
E. P. Bogolyubov, V. D. Bochkov, V. A. Veretennikov, L. T. Vekhoreva, V. A. Gribkov, A. V. Dubrovskii, Y. P. Ivanov, A. I. Isakov, O. N. Krokhin, P. Lee, S. Lee, V. Ya. Nikulin, A. Serban, P. V. Silin, X. Feng, and G. X. Zhang, Phys. Scr. 57, 488 (1998).
S. Lee and A. Serban, IEEE Trans. Plasma Sci. 24, 1101 (1996).
M. F. Lu, Nucl. Instrum. Methods Phys. Res., Sect. B 117, 452 (1996).
S. Lee, S. H. Saw, R. S. Rawat, P. Lee, R. Verma, A. Talebitaher, S. M. Hassan, A. E. Abdou, M. Ismail, A. Mohamed, H. Torreblanca, S. Al Hawat, M. Akel, P. L. Chong, F. Roy, A. Singh, D. Wong, and K. Devi, J. Fusion Energy 31(2), 198 (2011).
A. Bernard, H. Bruzzone, P. Choi, H. Chuaqui, V. A. Gribkov, J. Herrera, K. Hirano, A. Krejci, S. Lee, C. Luo, F. Mezzetti, M. Sadowski, H. Schmidt, K. Ware, C. S. Wong, and V. Zoita, J. Moscow Phys. Soc. 8, 93 (1998).
G. F. Knoll, Radiation Detection and Measurement, 4th ed. (John Wiley and Sons, 2010).
S. Vaughn, “Investigation of a passive, temporal, neutron monitoring system that functions within the confines of start I,” M.Tech. thesis, Air force Institute of Technology, 2003, AFIT/GNE/ENP/03–10.
J. O. Pouzo and M. M. Milanese, IEEE Trans. Plasma Sci. 31(6), 1237 (2003).
R. Gratton, H. Kelly, M. Milanese, and J. Pouzo, Phys. Lett. A 62(6), 422 (1977).
M. Milanese and J. Pouzo, Nucl. Fusion 25(7), 840 (1985).
H. Alfvén, “On the cosmogony of the solar system,” Stockholm Observatoriums Ann. 1(2), 114 (1942).
H. Acuña, L. Bernal, and J. Pouzo, Proc. Int. Conf. Plasma Phys. 1, 125 (1994).
M. Milanese, R. Moroso, and J. Pouzo, IEEE Trans. Plasma Sci. 21, 373 (1993).
M. G. Haines, Nucl. Instrum. Methods Phys. Res. 207, 179 (1983).
T. Yamamoto, K. Shimoda, and K. Hirano, Jpn. J. Appl. Phys., Part 1 24, 324 (1985).
L. Bilbao and H. Bruzzone, Phys. Lett. A 101, 261 (1984).
J. J. E. Herrera, F. Castillo, and R. Rangel, AIP Conf. Proc. 808, 187 (2006).
F. Castillo, M. Milanese, R. Moroso, and J. Pouzo, J. Phys. D: Appl. Phys. 30, 1499 (1997).
F. Castillo, M. Milanese, R. Moroso, and J. Pouzo, J. Phys. D: Appl. Phys. 33, 141 (2000).
R. Verma, R. S. Rawat, P. Lee, M. Krishnan, S. V. Springham, and T. L. Tan, Plasma Phys. Controlled Fusion 51, 07508 (2009).
See for numerical experiments on plasma focus neutron yield optimization.

Data & Media loading...


Article metrics loading...



The results of characterization experiments carried out on a newly developed dense plasma focus device based intense pulsed neutron source with efficient and compact pulsed power system are reported. Its high current sealed pseudospark switch based low inductance capacitor bank with maximum stored energy of ∼10 kJ is segregated into four modules of ∼2.5 kJ each and it cumulatively delivers peak current in the range of 400 kA–600 kA (corresponding to charging voltage range of 14 kV–18 kV) in a quarter time period of ∼2 s. The neutron yield performance of this device has been optimized by discretely varying deuterium filling gas pressure in the range of 6 mbar–11 mbar at ∼17 kV/550 kA discharge. At ∼7 kJ/8.5 mbar operation, the average neutron yield has been measured to be in the order of ∼4 × 109 neutrons/pulse which is the highest ever reported neutron yield from a plasma focus device with the same stored energy. The average forward to radial anisotropy in neutron yield is found to be ∼2. The entire system is contained on a moveable trolley having dimensions 1.5 m × 1 m × 0.7 m and its operation and control (up to the distance of 25 m) are facilitated through optically isolated handheld remote console. The overall compactness of this system provides minimum proximity to small as well as large samples for irradiation. The major intended application objective of this high neutron yield dense plasma focus device development is to explore the feasibility of active neutron interrogation experiments by utilization of intense pulsed neutron sources.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd