Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
B. P. Abbott et al. (LIGO Scientific Collaboration, Virgo Collaboration), “Observation of gravitational waves from a binary black hole merger,” Phys. Rev. Lett. 116, 061102 (2016).
B. P. Abbott et al. (LIGO Scientific Collaboration, Virgo Collaboration), “GW151226: Observation of gravitational waves from a 22-solar-mass binary black hole coalescence,” Phys. Rev. Lett. 116, 241103 (2016).
B. P. Abbott et al. (LIGO Scientific Collaboration, Virgo Collaboration), “Binary black hole mergers in the first advanced LIGO observing run,” e-print arXiv:1606.04856 [gr-qc] (2016).
LIGO Scientific Collaboration, “Advanced LIGO,” Classical Quantum Gravity 32, 074001 (2015).
LIGO Scientific Collaboration, “GW150914: The advanced LIGO detectors in the era of first discoveries,” Phys. Rev. Lett. 116, 131103 (2016).
LIGO Scientific Collaboration, “LIGO: The laser interferometer gravitational-wave observatory,” Rep. Prog. Phys. 72, 076901 (2009).
T. Accadia et al., “Virgo: A laser interferometer to detect gravitational waves,” J. Instrum. 7, P03012 (2012).
F. Acernese et al., “Automation of the lock acquisition of the 3 km arm Virgo interferometer,” in 10th International Conference on Accelerator and Large Experimental Control Systems (Joint Accelerator Conferences Website (JACoW), 2005), p. TU2.2-2O, see
F. Acernese et al., “Advanced Virgo: A second-generation interferometric gravitational wave detector,” Classical Quantum Gravity 32, 024001 (2014).
International Electrotechnical Commission, international standard, Technical Report IEC 61131-3, 2013.
G. Bauer et al., “Status of the CMS detector control system,” J. Phys.: Conf. Ser. 396, 012023 (2012).
L. Lagin, R. Bryant, R. Carey, D. Casavant, R. Demaret, O. Edwards, W. Ferguson, J. Krammen, D. Larson, A. Lee, P. Ludwigsen, M. Miller, E. Moses, R. Nyholm, R. Reed, R. Shelton, P. V. Arsdall, and C. Wuest, “Status of the National ignition facility integrated computer control system,” in 20th IEEE/NPSS Symposium on Fusion Engineering (Institute of Electrical & Electronics Engineers (IEEE), 2003).
L. R. Dalesio, M. R. Kraimer, and A. J. Kozubal, “EPICS architecture,” in 4th International Conference on Accelerator and Large Experimental Control Systems (Joint Accelerator Conferences Website (JACoW), 1991).
J. Chaize, A. Goetz, W. Klotz, J. Meyer, M. Perez, E. Taurel, and P. Verdier, “The ESRF TANGO control system status,” e-print arXiv:cs/0111028 (2001).
B. Franek and C. Gaspar, “SMI++ object oriented framework used for automation and error recovery in the lhc experiments,” J. Phys.: Conf. Ser. 219, 022031 (2010).
B. Franek and C. Gaspar, “SMI++ object oriented framework for designing and implementing distributed control systems,” IEEE Trans. Nucl. Sci. 45, 1946 (1998).
G. D. Cataldo, A. Augustinus, M. Boccioli, P. Chochula, and L. S. Jirdén, “Finite state machines for integration and control in ALICE,” in 12th International Conference on Accelerator and Large Experimental Control Systems (Joint Accelerator Conferences Website (JACoW), 2007).
M. Misiowiec, V. Baggiolini, and M. Solfaroli Camilloci, “State machine framework and its use for driving LHC operational states,” in 13th International Conference on Accelerator and Large Experimental Physics Control Systems (Joint Accelerator Conferences Website (JACoW), 2011), pp. 782785.
R. Bork, AdvLigo CDS design overview, LIGO DCC T0900612, 2009, see
See for Beckhoff Automation GmbH & Co. KG.
A. Staley et al., “Achieving resonance in the Advanced LIGO gravitational-wave interferometer,” Classical Quantum Gravity 31, 245010 (2014).
P. Kwee, C. Bogan, K. Danzmann, M. Frede, H. Kim, P. King, J. Pöld, O. Puncken, R. L. Savage, F. Seifert, P. Wessels, L. Winkelmann, and B. Willke, “Stabilized high-power laser system for the gravitational wave detector Advanced LIGO,” Opt. Express 20, 10617 (2012).
A. F. Brooks, B. Abbott, M. A. Arain, G. Ciani, A. Cole, G. Grabeel, E. Gustafson, C. Guido, M. Heintze, A. Heptonstall, M. Jacobson, W. Kim, E. King, A. Lynch, S. O’Connor, D. Ottaway, K. Mailand, G. Mueller, J. Munch, V. Sannibale, Z. Shao, M. Smith, P. Veitch, T. Vo, C. Vorvick, and P. Willems, “Overview of Advanced LIGO adaptive optics,” e-print arXiv:1608.02934 [physics.ins-det] (2016).
C. L. Mueller, M. A. Arain, G. Ciani, R. T. DeRosa, A. Effler, D. Feldbaum, V. V. Frolov, P. Fulda, J. Gleason, M. Heintze, K. Kawabe, E. J. King, K. Kokeyama, W. Z. Korth, R. M. Martin, A. Mullavey, J. Peold, V. Quetschke, D. H. Reitze, D. B. Tanner, C. Vorvick, L. F. Williams, and G. Mueller, “The Advanced LIGO input optics,” Rev. Sci. Instrum. 87, 014502 (2016).
A. J. Mullavey, B. J. J. Slagmolen, J. Miller, M. Evans, P. Fritschel, D. Sigg, S. J. Waldman, D. A. Shaddock, and D. E. McClelland, “Arm-length stabilisation for interferometric gravitational-wave detectors using frequency-doubled auxiliary lasers,” Opt. Express 20, 81 (2011).
K. Izumi, K. Arai, B. Barr, J. Betzwieser, A. Brooks, K. Dahl, S. Doravari, J. C. Driggers, W. Z. Korth, H. Miao, J. Rollins, S. Vass, D. Yeaton-Massey, and R. X. Adhikari, “Multicolor cavity metrology,” J. Opt. Soc. Am. A 29, 2092 (2012).
T. T. Fricke, N. D. Smith-Lefebvre, R. Abbott, R. Adhikari, K. L. Dooley, M. Evans, P. Fritschel, V. V. Frolov, K. Kawabe, J. S. Kissel, B. J. J. Slagmolen, and S. J. Waldman, “DC readout experiment in Enhanced LIGO,” Classical Quantum Gravity 29, 065005 (2012).
N. A. Robertson, G. Cagnoli, D. R. M. Crooks, E. Elliffe, J. E. Faller, P. Fritschel, S. Goßler, A. Grant, A. Heptonstall, J. Hough, H. Lück, R. Mittleman, M. Perreur-Lloyd, M. V. Plissi, S. Rowan, D. H. Shoemaker, P. H. Sneddon, K. A. Strain, C. I. Torrie, H. Ward, and P. Willems, “Quadruple suspension design for Advanced LIGO,” Classical Quantum Gravity 19, 40434058 (2002).
F. Matichard, B. Lantz, R. Mittleman, K. Mason, J. Kissel, B. Abbott, S. Biscans, J. McIver, R. Abbott, S. Abbott, E. Allwine, S. Barnum, J. Birch, C. Celerier, D. Clark, D. Coyne, D. DeBra, R. DeRosa, M. Evans, S. Foley, P. Fritschel, J. A. Giaime, C. Gray, G. Grabeel, J. Hanson, C. Hardham, M. Hillard, W. Hua, C. Kucharczyk, M. Landry, A. L. Roux, V. Lhuillier, D. Macleod, M. Macinnis, R. Mitchell, B. O’Reilly, D. Ottaway, H. Paris, A. Pele, M. Puma, H. Radkins, C. Ramet, M. Robinson, L. Ruet, P. Sarin, D. Shoemaker, A. Stein, J. Thomas, M. Vargas, K. Venkateswara, J. Warner, and S. Wen, “Seismic isolation of Advanced LIGO: Review of strategy, instrumentation and performance,” Classical Quantum Gravity 32, 185003 (2015).
Python Software Foundation, “Python language reference,” see
E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numer. Math. 1, 269271 (1959).
J. G. Rollins, Advanced LIGO Guardian documentation, LIGO DCC T1500292, 2015, see
M. Evans et al., “Observation of parametric instability in Advanced LIGO,” Phys. Rev. Lett. 114, 161102 (2015).
J. Miller, L. Barsotti, S. Vitale, P. Fritschel, M. Evans, and D. Sigg, “Prospects for doubling the range of Advanced LIGO,” Phys. Rev. D 91, 062005 (2015).
Y. Aso, Y. Michimura, K. Somiya, M. Ando, O. Miyakawa, T. Sekiguchi, D. Tatsumi, and H. Yamamoto, “Interferometer design of the KAGRA gravitational wave detector,” Phys. Rev. D 88, 043007 (2013).

Data & Media loading...


Article metrics loading...



The Laser Interferometer Gravitational-wave Observatory (LIGO) consists of two identical yet independent, widely separated, long-baseline gravitational-wave detectors. Each Advanced LIGO detector consists of complex optical-mechanical systems isolated from the ground by multiple layers of active seismic isolation, all controlled by hundreds of fast, digital, feedback control systems. This article describes a novel state machine-based automation platform developed to handle the automation and supervisory control challenges of these detectors. The platform, called , consists of distributed, independent, state machine automaton nodes organized hierarchically for full detector control. User code is written in standard Python and the platform is designed to facilitate the fast-paced development process associated with commissioning the complicated Advanced LIGO instruments. While developed specifically for the Advanced LIGO detectors, Guardian is a generic state machine automation platform that is useful for experimental control at all levels, from simple table-top setups to large-scale multi-million dollar facilities.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd