Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
F. P. Rogers, “A device for experimental observation of flux vortices trapped in superconducting thin films,” Master’s thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts,1983.
L. N. Vu and D. J. Van Harlingen, IEEE Trans. Appl. Supercond. 3, 1918 (1993).
R. C. Black, A. Mathai, F. C. Wellstood, E. Dantsker, A. H. Miklich, D. T. Nemeth, J. J. Kingston, and J. Clarke, Appl. Phys. Lett. 62, 2128 (1993).
J. R. Kirtley, M. B. Ketchen, K. G. Stawiasz, J. Z. Sun, W. J. Gallagher, S. H. Blanton, and S. J. Wind, Appl. Phys. Lett. 66, 1138 (1995).
J. R. Kirtley and J. Wikswo, Annu. Rev. Mater. Sci. 29, 117 (1999).
J. R. Kirtley, Rep. Prog. Phys. 73, 126501 (2010).
C. Veauvy, K. Hasselbach, and D. Mailly, Rev. Sci. Instrum. 73, 3825 (2002).
C. Granata and A. Vettoliere, Phys. Rep. 614, 1 (2016).
W. Wernsdorfer, E. B. Orozco, K. Hasselbach, A. Benoit, B. Barbara, N. Demoncy, A. Loiseau, H. Pascard, and D. Mailly, Phys. Rev. Lett. 78, 1791 (1997).
A. G. P. Troeman, H. Derking, B. Borger, J. Pleikies, D. Veldhuis, and H. Hilgenkamp, Nano Lett. 7, 2152 (2007).
L. Hao, J. C. Macfarlane, J. C. Gallop, D. Cox, J. Beyer, D. Drung, and T. Schurig, Appl. Phys. Lett. 92, 192507 (2008).
A. Finkler, Y. Segev, Y. Myasoedov, M. L. Rappaport, L. Ne’eman, D. Vasyukov, E. Zeldov, M. E. Huber, J. Martin, and A. Yacoby, Nano Lett. 10, 1046 (2010).
D. Vasyukov, Y. Anahory, L. Embon, D. Halbertal, J. Cuppens, L. Neeman, A. Finkler, Y. Segev, Y. Myasoedov, M. L. Rappaport et al., Nat. Nanotechnol. 8, 639 (2013).
C. C. Tsuei, J. R. Kirtley, C. C. Chi, L. S. Yu-Jahnes, A. Gupta, T. Shaw, J. Z. Sun, and M. B. Ketchen, Phys. Rev. Lett. 73, 593 (1994).
M. B. Ketchen and J. R. Kirtley, IEEE Trans. Appl. Supercond. 5, 2133 (1995).
N. C. Koshnick, M. E. Huber, J. A. Bert, C. W. Hicks, J. Large, H. Edwards, and K. A. Moler, Appl. Phys. Lett. 93, 243101 (2008).
M. B. Ketchen, T. Kopley, and H. Ling, Appl. Phys. Lett. 44, 1008 (1984).
B. W. Gardner, J. C. Wynn, P. G. Björnsson, E. W. J. Straver, K. A. Moler, J. R. Kirtley, and M. B. Ketchen, Rev. Sci. Instrum. 72, 2361 (2001).
M. E. Huber, N. C. Koshnick, H. Bluhm, L. J. Archuleta, T. Azua, P. G. Björnsson, B. W. Gardner, S. T. Halloran, E. A. Lucero, and K. A. Moler, Rev. Sci. Instrum. 79, 053704 (2008).
M. B. Ketchen, D. D. Awschalom, W. J. Gallagher, A. W. Kleinsasser, R. L. Sandstrom, J. R. Rozen, and B. Bumble, IEEE Trans. Mag. 25, 1212 (1989).
N. C. Koshnick, J. R. Kirtley, and K. A. Moler, e-print arXiv:1002.1529v1.
C. D. Tesche and J. Clarke, J. Low Temp. Phys. 29, 301 (1977).
W. H. Chang, IEEE Trans. Mag. 17, 764 (1981).
See for fasthenry, a software package that calculates the inductance of 3-dimensional superconductors.
J. M. Jaycox and M. B. Ketchen, IEEE Trans. Mag. 17, 400 (1981).
See for Hypres Niobium Integrated Circuit Process S45/100/200 Design Rules.
W. C. Stewart, Appl. Phys. Lett. 12, 277 (1968).
D. E. McCumber, J. Appl. Phys. 39, 2503 (1968).
D. J. Adelerhof, M. J. van Duuren, J. Flokstra, H. Rogalla, J. Kawai, and H. Kado, IEEE Trans. Appl. Supercond. 5, 2160 (1995).
M. E. Huber, P. A. Neil, R. G. Benson, D. A. Burns, A. M. Corey, C. S. Flynn, Y. Kitaygorodskaya, O. Massihzadeh, J. M. Martinis, and G. C. Hilton, IEEE Trans. Appl. Supercond. 11, 1251 (2001).
E. H. Brandt, Phys. Rev. B 72, 024529.
B. Delaunay, Izv. Akad. Nauk SSSR 7, 793 (1934).
A. I. Bobenko and B. A. Springborn, e-print arXiv:math/0503219v3 (2006).
M. Gurvitch, M. A. Washington, and H. A. Huggins, Appl. Phys. Lett. 42, 472 (1983).
M. B. Ketchen, D. Pearson, A. W. Kleinsasser, C. K. Hu, M. Smyth, J. Logan, K. Stawiasz, E. Baran, M. Jaso, T. Ross, K. Petrillo, M. Manny, S. B. Brodsky, W. J. Gallagher, and M. Bhushan, Appl. Phys. Lett. 59, 2609 (1991).
A. Barone and G. Paterno, Physics and Applications of the Josephson Effect (Wiley, New York, 1982).
M. D. Fiske, Rev. Mod. Phys. 36, 221 (1964).
K. Enpuku, K. Yoshida, and S. Kohjiro, J. Appl. Phys. 60, 4218 (1986).
R. Huebener, R. Kampwirth, R. Martin, T. Barbee, Jr., and R. Zubeck, J. Low Temp. Phys. 19, 247 (1975).

Data & Media loading...


Article metrics loading...



Superconducting QUantum Interference Device (SQUID) microscopy has excellent magnetic field sensitivity, but suffers from modest spatial resolution when compared with other scanning probes. This spatial resolution is determined by both the size of the field sensitive area and the spacing between this area and the sample surface. In this paper we describe scanning SQUID susceptometers that achieve sub-micron spatial resolution while retaining a white noise floor flux sensitivity of ≈2Φ/ 1/2. This high spatial resolution is accomplished by deep sub-micron feature sizes, well shielded pickup loops fabricated using a planarized process, and a deep etch step that minimizes the spacing between the sample surface and the SQUID pickup loop. We describe the design, modeling, fabrication, and testing of these sensors. Although sub-micron spatial resolution has been achieved previously in scanning SQUID sensors, our sensors not only achieve high spatial resolution but also have integrated modulation coils for flux feedback, integrated field coils for susceptibility measurements, and batch processing. They are therefore a generally applicable tool for imaging sample magnetization, currents, and susceptibilities with higher spatial resolution than previous susceptometers.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd