Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/rsi/87/9/10.1063/1.4962023
1.
U. Seljak and M. Zaldarriaga, Phys. Rev. Lett. 78, 2054 (1997); e-print arXiv:astro-ph/9609169.
http://dx.doi.org/10.1103/PhysRevLett.78.2054
2.
M. Kamionkowski, A. Kosowsky, and A. Stebbins, Phys. Rev. Lett. 78, 2058 (1997); e-print arXiv:astro-ph/9609132.
http://dx.doi.org/10.1103/PhysRevLett.78.2058
3.
M. Kamionkowski and E. D. Kovetz, Annu. Rev. Astron. Astrophys. 54, 227269 (2016).
http://dx.doi.org/10.1146/annurev-astro-081915-023433
4.
K. Array and BICEP2 Collaborations, Phys. Rev. Lett. 116, 031302 (2016).
http://dx.doi.org/10.1103/PhysRevLett.116.031302
5.
R. H. Dicke, Rev. Sci. Instrum. 17, 268 (1946).
http://dx.doi.org/10.1063/1.1770483
6.
N. Jarosik et al., Astrophys. J. 145, 413 (2003); e-print arXiv:astro-ph/0301164.
http://dx.doi.org/10.1086/346080
7.
P. C. Farese et al., Astrophys. J. 610, 625 (2004); e-print arXiv:astro-ph/0308309.
http://dx.doi.org/10.1086/421837
8.
D. Barkats et al., Astrophys. J. 159, 1 (2005); e-print arXiv:astro-ph/0503329.
http://dx.doi.org/10.1086/430208
9.
QUIET Collaboration et al., Astrophys. J. 760, 145 (2012); e-print arXiv:1207.5034 [astro-ph.CO].
http://dx.doi.org/10.1088/0004-637X/760/2/145
10.
M. Bersanelli et al., Astron. Astrophys. 520, A4 (2010); e-print arXiv:1001.3321 [astro-ph.IM].
http://dx.doi.org/10.1051/0004-6361/200912853
11.
E. Stefanescu, “The Ku-band polarization identifier, a new instrument to probe polarized astrophysical radiation at 12–18 GHz,” Ph.D. thesis, University of Miami, 2006.
12.
C. W. O’dell, B. G. Keating, A. de Oliveira-Costa, M. Tegmark, and P. T. Timbie, Phys. Rev. D 68, 042002 (2003); e-print arXiv:astro-ph/0212425.
http://dx.doi.org/10.1103/PhysRevD.68.042002
13.
E. M. Leitch, J. M. Kovac, N. W. Halverson, J. E. Carlstrom, C. Pryke, and M. W. E. Smith, Astrophys. J. 624, 10 (2005); e-print arXiv:astro-ph/0409357.
http://dx.doi.org/10.1086/428825
14.
S. Padin et al., Publ. Astron. Soc. Pac. 114, 83 (2002).
http://dx.doi.org/10.1086/324786
15.
M.-T. Chen et al., Astrophys. J. 694, 1664 (2009); e-print arXiv:0902.3636 [astro-ph.CO].
http://dx.doi.org/10.1088/0004-637X/694/2/1664
16.
S. Moyerman et al., Astrophys. J. 765, 64 (2013); e-print arXiv:1212.0133 [astro-ph.IM].
http://dx.doi.org/10.1088/0004-637X/765/1/64
17.
T. J. Jones and D. Klebe, Publ. Astron. Soc. Pac. 100, 1158 (1988).
http://dx.doi.org/10.1086/132283
18.
S. R. Platt, R. H. Hildebrand, R. J. Pernic, J. A. Davidson, and G. Novak, Publ. Astron. Soc. Pac. 103, 1193 (1991).
http://dx.doi.org/10.1086/132940
19.
R. W. Leach, D. P. Clemens, B. D. Kane, and R. Barvainis, Astrophys. J. 370, 257 (1991).
http://dx.doi.org/10.1086/169811
20.
B. R. Johnson et al., Astrophys. J. 665, 42 (2007); e-print arXiv:astro-ph/0611394.
http://dx.doi.org/10.1086/518105
21.
J. E. Ruhl, CMBpol Technology Workshop Whitepaper, 2008, and the references therein.
22.
A. Kusaka, T. Essinger-Hileman et al., Rev. Sci. Instrum. 85, 024501 (2014).
http://dx.doi.org/10.1063/1.4862058
23.
B. Reichborn-Kjennerud et al., Proc. SPIE 7741, 77411C (2010).
http://dx.doi.org/10.1117/12.857138
24.
A. Ritacco et al., J. Low Temp. Phys. 184(3-4), 724732 (2016).
http://dx.doi.org/10.1007/s10909-015-1340-8
25.
M. Shimon, B. Keating, N. Ponthieu, and E. Hivon, Phys. Rev. D 77, 083003 (2008); arXiv:0709.1513.
http://dx.doi.org/10.1103/PhysRevD.77.083003
26.
BICEP2 and Keck Array Collaborations, Astrophys. J. 811, 126 (2015); e-print arXiv:1502.00643.
http://dx.doi.org/10.1088/0004-637X/811/2/126
27.
T. Essinger-Hileman et al., AIP Conf, Proc. 1185, 494 (2009).
http://dx.doi.org/10.1063/1.3292387
28.
J. W. Appel, “Detectors for the Atacama B-modear search experiment,” Ph.D. thesis, Princeton University, New Jersey, 2012.
29.
T. M. Essinger-Hileman, “Probing inflationary cosmology: The Atacama B-mode search (ABS),” Ph.D. thesis, Princeton University, New Jersey, 2011.
30.
L. Parker, “The Atacama B-mode search: Instrumentation and observations,” Ph.D. thesis,Princeton University, New Jersey, 2015.
31.
K. Visnjic, “Data characteristics and preliminary results from the Atacama B-mode Search (ABS),” Ph.D. thesis, Princeton University, New Jersey, 2013.
32.
A. Suzuki, P. Ade, Y. Akiba, C. Aleman, K. Arnold, M. Atlas, D. Barron, J. Borrill, S. Chapman, Y. Chinone, A. Cukierman, M. Dobbs, T. Elleflot, J. Errard, G. Fabbian, G. Feng, A. Gilbert, W. Grainger, N. Halverson, M. Hasegawa, K. Hattori, M. Hazumi, W. Holzapfel, Y. Hori, Y. Inoue, G. Jaehnig, N. Katayama, B. Keating, Z. Kermish, R. Keskitalo, T. Kisner, A. Lee, F. Matsuda, T. Matsumura, H. Morii, S. Moyerman, M. Myers, M. Navaroli, H. Nishino, T. Okamura, C. Reichart, P. Richards, C. Ross, K. Rotermund, M. Sholl, P. Siritanasak, G. Smecher, N. Stebor, R. Stompor, J. Suzuki, S. Takada, S. Takakura, T. Tomaru, B. Wilson, H. Yamaguchi, and O. Zahn, J. Low Temp. Phys. 176, 719 (2014).
http://dx.doi.org/10.1007/s10909-014-1112-x
33.
M. Niemack and ACTPol Collaboration, American Astronomical Society Meeting Abstracts #221, American Astronomical Society Meeting Abstracts Vol. 221 (American Astronomical Society, 2013), p. 105.04, availabe at https://aas.org/meetings/aas221/science_program.
34.
S. W. Henderson et al., J. Low Temp. Phys. 184, 772 (2016).
http://dx.doi.org/10.1007/s10909-016-1575-z
35.
V. V. Parshin, Int. J. Infrared Millimeter Waves 15, 339 (1994).
http://dx.doi.org/10.1007/BF02096245
36.
See https://www.rogerscorp.com/acs/products/34/RT-duroid-6002-Laminates.aspx for the material properties of Rogers RT/Duroid 6002.
37.
New Way Air Bearings, 50 McDonald Blvd, Aston, PA 19014 USA.
38.
S. M. Simon et al., J. Low Temp. Phys. 184, 534 (2016).
http://dx.doi.org/10.1007/s10909-015-1370-2
39.
T. Essinger-Hileman, Appl. Opt. 52, 212 (2013); e-print arXiv:1301.6160 [physics.optics].
http://dx.doi.org/10.1364/AO.52.000212
40.
P. A. R. Ade et al., Astrophys. J. 806(2), 206 (2015).
http://dx.doi.org/10.1088/0004-637X/806/2/206
41.
See http://www.apex-telescope.org/weather/ for information from the APEX weather monitor.
42.
S. M. Simon et al., Proc. SPIE 9153, 91530Y (2014).
http://dx.doi.org/10.1117/12.2055576
43.
J. R. Pardo, J. Cernicharo, and E. Serabyn, IEEE Trans. Antennas Propag. 49, 1683 (2001).
http://dx.doi.org/10.1109/8.982447
44.
See https://www.mrao.cam.ac.uk/~bn204/alma/atmomodel.html for further information about the AATM software package.
45.
W. Hu, M. M. Hedman, and M. Zaldarriaga, Phys. Rev. D 67, 043004 (2003); e-print arXiv:astro-ph/0210096.
http://dx.doi.org/10.1103/PhysRevD.67.043004
46.
We fit six amplitudes (Eq. (13)) for each of the Q and U leakage maps, yielding 12 amplitudes in total.
47.
H. C. Chiang et al., Astrophys. J. 711, 1123 (2010); arXiv:0906.1181 [astro-ph.CO].
http://dx.doi.org/10.1088/0004-637X/711/2/1123
48.
BICEP2 and Keck Array Collaborations, Astrophys. J. 806, 206 (2015); e-print arXiv:1502.00596 [astro-ph.IM].
http://dx.doi.org/10.1088/0004-637X/806/2/206
49.
QUIET Collaboration et al., Astrophys. J. 741, 111 (2011); e-print arXiv:1012.3191 [astro-ph.CO].
http://dx.doi.org/10.1088/0004-637X/741/2/111
50.
C. Bischoff et al., Astrophys. J. 768, 9 (2013).
http://dx.doi.org/10.1088/0004-637X/768/1/9
51.
L. Page et al., Astrophys. J. 170, 335 (2007); e-print arXiv:astro-ph/0603450.
http://dx.doi.org/10.1086/513699
http://aip.metastore.ingenta.com/content/aip/journal/rsi/87/9/10.1063/1.4962023
Loading
/content/aip/journal/rsi/87/9/10.1063/1.4962023
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/87/9/10.1063/1.4962023
2016-09-14
2016-09-27

Abstract

We present an evaluation of systematic effects associated with a continuously rotating, ambient-temperature half-wave plate (HWP) based on two seasons of data from the Atacama B-Mode Search (ABS) experiment located in the Atacama Desert of Chile. The ABS experiment is a microwave telescope sensitive at 145 GHz. Here we present our in-field evaluation of celestial (Cosmic Microwave Background (CMB) plus galactic foreground) temperature-to-polarization leakage. We decompose the leakage into scalar, dipole, and quadrupole leakage terms. We report a scalar leakage of ∼0.01%, consistent with model expectations and an order of magnitude smaller than other CMB experiments have been reported. No significant dipole or quadrupole terms are detected; we constrain each to be <0.07% (95% confidence), limited by statistical uncertainty in our measurement. Dipole and quadrupole leakage at this level lead to systematic error on ≲ 0.01 before any mitigation due to scan cross-linking or boresight rotation. The measured scalar leakage and the theoretical level of dipole and quadrupole leakage produce systematic error of < 0.001 for the ABS survey and focal-plane layout before any data correction such as so-called deprojection. This demonstrates that ABS achieves significant beam systematic error mitigation from its HWP and shows the promise of continuously rotating HWPs for future experiments.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/87/9/1.4962023.html;jsessionid=IC1cK0QMTb421J3aSF5sqbED.x-aip-live-06?itemId=/content/aip/journal/rsi/87/9/10.1063/1.4962023&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=rsi.aip.org/87/9/10.1063/1.4962023&pageURL=http://scitation.aip.org/content/aip/journal/rsi/87/9/10.1063/1.4962023'
Right1,Right2,Right3,