Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/rsi/87/9/10.1063/1.4962024
1.
G. Ehlers, A. A. Podlesnyak, J. L. Niedziela, E. B. Iverson, and P. E. Sokol, “The new cold neutron chopper spectrometer at the spallation neutron source: Design and performance,” Rev. Sci. Instrum. 82(8), 085108 (2011).
http://dx.doi.org/10.1063/1.3626935
2.
M. B. Stone, J. L. Niedziela, D. L. Abernathy, L. DeBeer-Schmitt, G. Ehlers, O. Garlea, G. E. Granroth, M. Graves-Brook, A. I. Kolesnikov, A. Podlesnyak, and B. Winn, “A comparison of four direct geometry time-of-flight spectrometers at the spallation neutron source,” Rev. Sci. Instrum. 85(4), 045113 (2014).
http://dx.doi.org/10.1063/1.4870050
3.
E. B. Iverson, P. D. Ferguson, F. X. Gallmeier, and B. D. Murphy, “The spallation neutron source high power target station moderator performance: Calculations and studies,” J. Neutron Res. 11(1-2), 8391 (2003).
http://dx.doi.org/10.1080/1023816031000100932
4.
R. T. Azuah, L. R. Kneller, Y. Qiu, P. L. W. Tregenna-Piggott, C. M. Brown, J. R. D. Copley, and R. M. Dimeo, “Dave: A comprehensive software suite for the reduction, visualization, and analysis of low energy neutron spectroscopic data,” J. Res. Natl. Inst. Stand. Technol. 114, 341358 (2009).
http://dx.doi.org/10.6028/jres.114.025
5.
O. Arnold, J. C. Bilheux, J. M. Borreguero, A. Buts, S. I. Campbell, L. Chapon, M. Doucet, N. Draper, R. Ferraz Leal, M. A. Gigg, V. E. Lynch, A. Markvardsen, D. J. Mikkelson, R. L. Mikkelson, R. Miller, K. Palmen, P. Parker, G. Passos, T. G. Perring, P. F. Peterson, S. Ren, M. A. Reuter, A. T. Savici, J. W. Taylor, R. J. Taylor, R. Tolchenov, W. Zhou, and J. Zikovsky, “Mantid—Data analysis and visualization package for neutron scattering and μSR experiments,” Nucl. Instrum. Methods Phys. Res., Sect. A 764, 156166 (2014).
http://dx.doi.org/10.1016/j.nima.2014.07.029
6.
R. A. Ewings, A. Buts, M. D. Le, J. van Duijn, I. Bustinduy, and T. G. Perring, “HORACE: Software for the analysis of data from single crystal spectroscopy experiments at time-of-flight neutron instruments,” Nucl. Instrum. Methods Phys. Res.. Sect. A 834, 132142 (2016).
http://dx.doi.org/10.1016/j.nima.2016.07.036
7.
R. E. Lechner, “Optimization of a multi-disk chopper spectrometer for cold neutron scattering experiments,” in Proceedings of the 11th Meeting of the International Collaboration on Advanced Neutron Sources (ICANS-XI)(KEK Report 90-25,1991, The National Laboratory for High Energy Physics, Japan), Vol. 2, pp. 717732.
8.
R. J. Birgenau, R. Ramesh, and S. E. Nagler, Quantum Condensed Matter Workshop Report, 2014.
9.
J. R. Stewart, K. H. Andersen, E. Babcock, C. D. Frost, A. Hiess, D. Jullien, J. A. Stride, J.-F. Barthélémy, F. Marchal, A. P. Murani, H. Mutka, and H. Schober, “PASTIS: An insert for polarization analysis studies on a thermal inelastic spectrometer,” in Proceedings of the Eighth International Conference on Neutron Scattering , Phys. B.: Condens. Matter 385–386(Part 2), 11421145 (2006).
http://dx.doi.org/10.1016/j.physb.2006.05.393
10.
C. J. Beecham, S. Boag, C. D. Frost, T. J. McKetterick, J. R. Stewart, K. H. Andersen, P. M. Bentley, and D. Jullien, “3He polarization for ISIS TS2 phase I instruments,” in Proceedings of the 8th International Workshop on Polarised Neutrons for Condensed Matter Investigation , Phys. B.: Condens. Matter 406(12), 24292432 (2011).
http://dx.doi.org/10.1016/j.physb.2010.11.054
11.
T. Yokoo, K. Ohoyama, S. Itoh, J. Suzuki, M. Nanbu, N. Kaneko, K. Iwasa, T. J. Sato, H. Kimura, and M. Ohkawara, “Construction of polarized inelastic neutron spectrometer in J-PARC,” J. Phys.: Conf. Ser. 502(1), 012046 (2014).
http://dx.doi.org/10.1088/1742-6596/502/1/012046
12.
B. Winn, U. Filges, V. O. Garlea, M. Graves-Brook, M. Hagen, C. Jiang, M. Kenzelmann, L. Passell, S. M. Shapiro, X. Tong, and I. Zaliznyak, “Recent progress on HYSPEC, and its polarization analysis capabilities,” EPJ Web Conf. 83, 03017 (2015).
http://dx.doi.org/10.1051/epjconf/20158303017
13.
K. C. Rule, G. Ehlers, J. R. Stewart, A. L. Cornelius, P. P. Deen, Y. Qiu, C. R. Wiebe, J. A. Janik, H. D. Zhou, D. Antonio, B. W. Woytko, J. P. Ruff, H. A. Dabkowska, B. D. Gaulin, and J. S. Gardner, “Polarized inelastic neutron scattering of the partially ordered Tb2Sn2O7,” Phys. Rev. B 76, 212405 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.212405
14.
G. Ehlers, J. R. Stewart, A. R. Wildes, P. P. Deen, and K. H. Andersen, “Generalization of the classical xyz-polarization analysis technique to out-of-plane and inelastic scattering,” Rev. Sci. Instrum. 84(9), 093901 (2013).
http://dx.doi.org/10.1063/1.4819739
15.
L. D. Jennings and C. A. Swenson, “Effects of pressure on the superconducting transition temperatures of Sn, In, Ta, Tl, and Hg,” Phys. Rev. 112, 3143 (1958).
http://dx.doi.org/10.1103/PhysRev.112.31
16.
L. Gao, Y. Y. Xue, F. Chen, Q. Xiong, R. L. Meng, D. Ramirez, C. W. Chu, J. H. Eggert, and H. K. Mao, “Superconductivity up to 164 K in HgBa2Cam−1CumO2m+2+δ (m = 1, 2, and 3) under quasihydrostatic pressures,” Phys. Rev. B 50, 42604263 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.4260
17.
X.-J. Chen, V. V. Struzhkin, Y. Yu, A. F. Goncharov, C.-T. Lin, H.-k. Mao, and R. J. Hemley, “Enhancement of superconductivity by pressure-driven competition in electronic order,” Nature 466(7309), 950953 (2010).
http://dx.doi.org/10.1038/nature09293
18.
A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov, and S. I. Shylin, “Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system,” Nature 525(7567), 7376 (2015).
http://dx.doi.org/10.1038/nature14964
19.
Y. Ma, M. Eremets, A. R. Oganov, Y. Xie, I. Trojan, S. Medvedev, A. O. Lyakhov, M. Valle, and V. Prakapenka, “Transparent dense sodium,” Nature 458(7235), 182185 (2009).
http://dx.doi.org/10.1038/nature07786
20.
I. I. Naumov and R. J. Hemley, “Origin of transitions between metallic and insulating states in simple metals,” Phys. Rev. Lett. 114, 156403 (2015).
http://dx.doi.org/10.1103/PhysRevLett.114.156403
21.
A. O. Shorikov, A. V. Lukoyanov, V. I. Anisimov, and S. Y. Savrasov, “Pressure-driven metal-insulator transition in BiFeO3 from dynamical mean-field theory,” Phys. Rev. B 92, 035125 (2015).
http://dx.doi.org/10.1103/PhysRevB.92.035125
22.
J. Neuefeind, M. Feygenson, J. Carruth, R. Hoffmann, and K. K. Chipley, “The nanoscale ordered materials diffractometer NOMAD at the spallation neutron source SNS,” Nucl. Instrum. Methods Phys. Res., Sect. B 287, 6875 (2012).
http://dx.doi.org/10.1016/j.nimb.2012.05.037
23.
R. Boehler, M. Guthrie, J. J. Molaison, A. M. dos Santos, S. Sinogeikin, S. Machida, N. Pradhan, and C. A. Tulk, “Large-volume diamond cells for neutron diffraction above 90 GPa,” High Pressure Res. 33(3), 546554 (2013).
http://dx.doi.org/10.1080/08957959.2013.823197
24.
O. Blaschko, G. Ernst, G. Quittner, W. Kress, and R. E. Lechner, “Mode Grüneisen parameter dispersion relation of RbI determined by neutron scattering,” Phys. Rev. B 11, 39603965 (1975).
http://dx.doi.org/10.1103/PhysRevB.11.3960
25.
O. Blaschko, G. Ernst, and G. Quittner, “Pressure induced phonon frequency shifts in KBr measured by inelastic neutron scattering,” J. Phys. Chem. Solids 36(1), 4144 (1975).
http://dx.doi.org/10.1016/0022-3697(75)90129-8
26.
J. Eckert, W. B. Daniels, and J. D. Axe, “Phonon dispersion and mode Grüneisen parameters in neon at high density,” Phys. Rev. B 14, 36493663 (1976).
http://dx.doi.org/10.1103/PhysRevB.14.3649
27.
J. W. Schmidt, M. Nielsen, and W. B. Daniels, “Coherent inelastic neutron scattering study of solid orthodeuterium at high pressure,” Phys. Rev. B 30, 63086319 (1984).
http://dx.doi.org/10.1103/PhysRevB.30.6308
28.
Th. Strässle, A. M. Saitta, S. Klotz, and M. Braden, “Phonon dispersion of ice under pressure,” Phys. Rev. Lett. 93, 225901 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.225901
29.
H. A. Mook, D. B. McWhan, and F. Holtzberg, “Lattice dynamics of mixed-valent SmS,” Phys. Rev. B 25, 43214323 (1982).
http://dx.doi.org/10.1103/PhysRevB.25.4321
30.
Y. Yamada, Y. Fujii, Y. Akahama, S. Endo, S. Narita, J. D. Axe, and D. B. McWhan, “Lattice-dynamical properties of black phosphorus under pressure studied by inelastic neutron scattering,” Phys. Rev. B 30, 24102413 (1984).
http://dx.doi.org/10.1103/PhysRevB.30.2410
31.
A. S. Ivanov, I. N. Goncharenko, V. A. Somenkov, and M. Braden, “Changes of phonon dispersion in graphite at high pressure,” High Pressure Res. 14(1-3), 145154 (1995).
http://dx.doi.org/10.1080/08957959508200913
32.
S. Kawano, J. A. Fernandez-Baca, and R. M. Nicklow, “Magnons in ferromagnetic terbium under high pressure,” J. Appl. Phys. 75(10), 60606062 (1994).
http://dx.doi.org/10.1063/1.355457
33.
S. Klotz and M. Braden, “Phonon dispersion of bcc iron to 10 GPa,” Phys. Rev. Lett. 85, 32093212 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.3209
34.
C. Vettier and W. B. Yelon, “Magnetic properties of FeCl2 at high pressure,” Phys. Rev. B 11, 47004710 (1975).
http://dx.doi.org/10.1103/PhysRevB.11.4700
35.
C. Vettier, D. B. McWhan, E. I. Blount, and G. Shirane, “Pressure dependence of magnetic excitations in PrSb,” Phys. Rev. Lett. 39, 10281031 (1977).
http://dx.doi.org/10.1103/PhysRevLett.39.1028
36.
J. Mesot, P. Allenspach, U. Staub, A. Furrer, H. Blank, H. Mutka, C. Vettier, E. Kaldis, J. Karpinski, and S. Rusiecki, “Pressure-induced structural and electronic properties of high-Tc superconducting materials studied by neutron scattering,” J. Less-Common Met. 164, 5969 (1990).
http://dx.doi.org/10.1016/0022-5088(90)90199-T
37.
Th. Strässle, M. Divis, J. Rusz, S. Janssen, F. Juranyi, R. Sadykov, and A. Furrer, “Crystal-field excitations in PrAl3 and NdAl3 at ambient and elevated pressure,” J. Phys.: Condens. Matter 15(19), 3257 (2003).
http://dx.doi.org/10.1088/0953-8984/15/19/325
38.
Z. Wang, K.-H. Liu, P. Le, M. Li, W.-S. Chiang, J. B. Leao, J. R. D. Copley, M. Tyagi, A. Podlesnyak, A. I. Kolesnikov, C.-Y. Mou, and S.-H. Chen, “Boson peak in deeply cooled confined water: A possible way to explore the existence of the liquid-to-liquid transition in water,” Phys. Rev. Lett. 112(23), 237802 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.237802
39.
Z. Wang, A. I. Kolesnikov, K. Ito, A. Podlesnyak, and S.-H. Chen, “Pressure effect on the boson peak in deeply cooled confined water: Evidence of a liquid-liquid transition,” Phys. Rev. Lett. 115(23), 235701 (2015).
http://dx.doi.org/10.1103/PhysRevLett.115.235701
40.
C. J. Ridley and K. V. Kamenev, “High pressure neutron and X-ray diffraction at low temperatures,” Z. Krist. - Cryst. Mat. 229(3), 171199 (2014).
http://dx.doi.org/10.1515/zkri-2013-1673
41.
M. Guthrie, “Future directions in high-pressure neutron diffraction,” J. Phys.: Condens. Matter 27(15), 153201 (2015).
http://dx.doi.org/10.1088/0953-8984/27/15/153201
42.
G. Perren, J. S. Möller, D. Hüvonen, A. A. Podlesnyak, and A. Zheludev, “Spin dynamics in pressure-induced magnetically ordered phases in (C4H12N2)Cu2Cl6,” Phys. Rev. B 92(5), 024414 (2015).
http://dx.doi.org/10.1103/PhysRevB.92.054413
43.
R. J. Hill, G. V. Gibbs, J. R. Craig, F. K. Ross, and J. M. Williams, “A neutron-diffraction study of hemimorphite,” Z. Krist. 146, 241 (1977).
http://dx.doi.org/10.1524/zkri.1977.146.4-6.241
44.
Y. V. Seryotkin and V. V. Bakakin, “Structural evolution of hemimorphite at high pressure up to 4.2 GPa,” Phys. Chem. Miner. 38(9), 679684 (2011).
http://dx.doi.org/10.1007/s00269-011-0440-5
45.
O. Delaire, J. Ma, K. Marty, A. F. May, M. A. McGuire, M. H. Du, D. J. Singh, A. Podlesnyak, G. Ehlers, M. D. Lumsden, and B. C. Sales, “Giant anharmonic phonon scattering in PbTe,” Nat. Mater. 10(8), 614619 (2011).
http://dx.doi.org/10.1038/nmat3035
46.
C. W. Li, J. Ma, H. B. Cao, A. F. May, D. L. Abernathy, G. Ehlers, C. Hoffmann, X. Wang, T. Hong, A. Huq, O. Gourdon, and O. Delaire, “Anharmonicity and atomic distribution of SnTe and PbTe thermoelectrics,” Phys. Rev. B 90(21), 214303 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.214303
47.
J. Ma, O. Delaire, A. F. May, C. E. Carlton, M. A. McGuire, L. H. VanBebber, D. L. Abernathy, G. Ehlers, T. Hong, A. Huq, W. Tian, V. M. Keppens, Y. Shao-Horn, and B. C. Sales, “Glass-like phonon scattering from a spontaneous nanostructure in AgSbTe2,” Nat. Nano. 8(6), 445451 (2013).
http://dx.doi.org/10.1038/nnano.2013.95
48.
J. Ma, O. Delaire, E. D. Specht, A. F. May, O. Gourdon, J. D. Budai, M. A. McGuire, T. Hong, D. L. Abernathy, G. Ehlers, and E. Karapetrova, “Phonon scattering rates and atomic ordering in Ag1−xSb1+xTe2+x (x = 0, 0.1, 0.2) investigated with inelastic neutron scattering and synchrotron diffraction,” Phys. Rev. B 90(13), 134303 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.134303
49.
C. W. Li, O. Hellman, J. Ma, A. F. May, H. B. Cao, X. Chen, A. D. Christianson, G. Ehlers, D. J. Singh, B. C. Sales, and O. Delaire, “Phonon self-energy and origin of anomalous neutron scattering spectra in SnTe and PbTe thermoelectrics,” Phys. Rev. Lett. 112(17), 175501 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.175501
50.
C. W. Li, J. Hong, A. F. May, D. Bansal, S. Chi, T. Hong, G. Ehlers, and O. Delaire, “Orbitally driven giant phonon anharmonicity in SnSe,” Nat. Phys. 11(12), 10631070 (2015).
http://dx.doi.org/10.1038/nphys3492
51.
C. H. Wang, M. D. Lumsden, R. S. Fishman, G. Ehlers, T. Hong, W. Tian, H. Cao, A. Podlesnyak, C. Dunmars, J. A. Schlueter, J. L. Manson, and A. D. Christianson, “Magnetic properties of the S = 1/2 quasisquare lattice antiferromagnet CuF2(H2O)2 (pyz) (pyz = pyrazine) investigated by neutron scattering,” Phys. Rev. B 86(6), 064439 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.064439
52.
D. Schmidiger, S. Mühlbauer, A. Zheludev, P. Bouillot, T. Giamarchi, C. Kollath, G. Ehlers, and A. M. Tsvelik, “Symmetric and asymmetric excitations of a strong-leg quantum spin ladder,” Phys. Rev. B 88(9), 094411 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.094411
53.
K. Matan, Y. Nambu, Y. Zhao, T. J. Sato, Y. Fukumoto, T. Ono, H. Tanaka, C. Broholm, A. Podlesnyak, and G. Ehlers, “Ghost modes and continuum scattering in the dimerized distorted kagome lattice antiferromagnet Rb2Cu3SnF12,” Phys. Rev. B 89(2), 024414 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.024414
54.
L. S. Wu, W. J. Gannon, I. A. Zaliznyak, A. M. Tsvelik, M. Brockmann, J.-S. Caux, M. S. Kim, Y. Qiu, J. R. D. Copley, G. Ehlers, A. Podlesnyak, and M. C. Aronson, “Orbital-exchange and fractional quantum number excitations in an f-electron metal, Y b2Pt2Pb,” Science 352(6290), 12061210 (2016).
http://dx.doi.org/10.1126/science.aaf0981
55.
L. Clark, G. J. Nilsen, E. Kermarrec, G. Ehlers, K. S. Knight, A. Harrison, J. P. Attfield, and B. D. Gaulin, “From spin glass to quantum spin liquid ground states in molybdate pyrochlores,” Phys. Rev. Lett. 113(11), 117201 (2014).
http://dx.doi.org/10.1103/PhysRevLett.113.117201
56.
D. E. MacLaughlin, O. O. Bernal, L. Shu, J. Ishikawa, Y. Matsumoto, J. J. Wen, M. Mourigal, C. Stock, G. Ehlers, C. L. Broholm, Y. Machida, K. Kimura, S. Nakatsuji, Y. Shimura, and T. Sakakibara, “Unstable spin-ice order in the stuffed metallic pyrochlore Pr2+xIr2−xO7−δ,” Phys. Rev. B 92(5), 054432 (2015).
http://dx.doi.org/10.1103/PhysRevB.92.054432
57.
J. Ma, Y. Kamiya, T. Hong, H. B. Cao, G. Ehlers, W. Tian, C. D. Batista, Z. L. Dun, H. D. Zhou, and M. Matsuda, “Static and dynamical properties of the spin-1/2 equilateral triangular-lattice antiferromagnet Ba3CoSb2O9,” Phys. Rev. Lett. 116(8), 087201 (2016).
http://dx.doi.org/10.1103/PhysRevLett.116.087201
58.
F. Ye, R. S. Fishman, J. A. Fernandez-Baca, A. A. Podlesnyak, G. Ehlers, H. A. Mook, Y. Wang, B. Lorenz, and C. W. Chu, “Long-range magnetic interactions in the multiferroic antiferromagnet MnWO4,” Phys. Rev. B 83(14), 140401 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.140401
59.
M. Frontzek, J. T. Haraldsen, A. Podlesnyak, M. Matsuda, A. D. Christianson, R. S. Fishman, A. S. Sefat, Y. Qiu, J. R. D. Copley, S. Barilo, S. V. Shiryaev, and G. Ehlers, “Magnetic excitations in the geometric frustrated multiferroic CuCrO2,” Phys. Rev. B 84(9), 094448 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.094448
60.
G. Ehlers, A. A. Podlesnyak, S. E. Hahn, R. S. Fishman, O. Zaharko, M. Frontzek, M. Kenzelmann, A. V. Pushkarev, S. V. Shiryaev, and S. Barilo, “Incommensurability and spin dynamics in the low-temperature phases of Ni3V2O8,” Phys. Rev. B 87(21), 214418 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.214418
61.
K. Fritsch, G. Ehlers, K. C. Rule, K. Habicht, M. Ramazanoglu, H. A. Dabkowska, and B. D. Gaulin, “Quantum phase transitions and decoupling of magnetic sublattices in the quasi-two-dimensional ising magnet Co3V2O8 in a transverse magnetic field,” Phys. Rev. B 92(18), 180404 (2015).
http://dx.doi.org/10.1103/PhysRevB.92.180404
62.
F. J. Brown, “Aspects of superconducting magnet design for neutron scattering sample environments,” J. Phys.: Conf. Ser. 251(1), 012093 (2010).
http://dx.doi.org/10.1088/1742-6596/251/1/012093
63.
H. Nojiri, S. Yoshii, M. Yasui, K. Okada, M. Matsuda, J. S. Jung, T. Kimura, L. Santodonato, G. E. Granroth, K. A. Ross, J. P. Carlo, and B. D. Gaulin, “Neutron Laue diffraction study on the magnetic phase diagram of multiferroic MnWO4 under pulsed high magnetic fields,” Phys. Rev. Lett. 106, 237202 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.237202
64.
C. de la Cruz, Q. Huang, J. W. Lynn, J. Li, W. Ratcliff II, J. L. Zarestky, H. A. Mook, G. F. Chen, J. L. Luo, N. L. Wang, and P. Dai, “Magnetic order close to superconductivity in the iron-based layered LaO1−xFxFeAs systems,” Nature 453(7197), 899902 (2008).
http://dx.doi.org/10.1038/nature07057
65.
A. D. Christianson, E. A. Goremychkin, R. Osborn, S. Rosenkranz, M. D. Lumsden, C. D. Malliakas, I. S. Todorov, H. Claus, D. Y. Chung, M. G. Kanatzidis, R. I. Bewley, and T. Guidi, “Unconventional superconductivity in Ba0.6K0.4Fe2As2 from inelastic neutron scattering,” Nature 456(7224), 930932 (2008).
http://dx.doi.org/10.1038/nature07625
66.
M. D. Lumsden and A. D. Christianson, “Magnetism in Fe-based superconductors,” J. Phys.: Condens. Matter 22(20), 203203 (2010).
http://dx.doi.org/10.1088/0953-8984/22/20/203203
67.
Y. Mizuguchi, H. Fujihisa, Y. Gotoh, K. Suzuki, H. Usui, K. Kuroki, S. Demura, Y. Takano, H. Izawa, and O. Miura, “BiS2-based layered superconductor Bi4O4S3,” Phys. Rev. B 86, 220510 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.220510
68.
M. G. Kim, G. S. Tucker, D. K. Pratt, S. Ran, A. Thaler, A. D. Christianson, K. Marty, S. Calder, A. Podlesnyak, S. L. Bud’ko, P. C. Canfield, A. Kreyssig, A. I. Goldman, and R. J. McQueeney, “Magnonlike dispersion of spin resonance in Ni-doped BaFe2As2,” Phys. Rev. Lett. 110(17), 177002 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.177002
69.
J. Lee, M. B. Stone, A. Huq, T. Yildirim, G. Ehlers, Y. Mizuguchi, O. Miura, Y. Takano, K. Deguchi, S. Demura, and S. H. Lee, “Crystal structure, lattice vibrations, and superconductivity of LaO1−xFxBiS2,” Phys. Rev. B 87(20), 205134 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.205134
70.
J. Lee, S. Demura, M. B. Stone, K. Iida, G. Ehlers, C. R. dela Cruz, M. Matsuda, K. Deguchi, Y. Takano, Y. Mizuguchi, O. Miura, D. Louca, and S. H. Lee, “Coexistence of ferromagnetism and superconductivity in CeO0.3F0.7BiS2,” Phys. Rev. B 90(22), 224410 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.224410
71.
Y. Li, Z. Yin, X. Wang, D. W. Tam, D. L. Abernathy, A. Podlesnyak, C. Zhang, M. Wang, L. Xing, C. Jin, K. Haule, G. Kotliar, T. A. Maier, and P. Dai, “Orbital selective spin excitations and their impact on superconductivity of LiFe1−xCoxAs,” Phys. Rev. Lett. 116, 247001 (2016).
http://dx.doi.org/10.1103/PhysRevLett.116.247001
72.
J. D. Nickels, H. O’Neill, L. Hong, M. Tyagi, G. Ehlers, K. L. Weiss, Q. Zhang, Zh. Yi, E. Mamontov, J. C. Smith, and A. P. Sokolov, “Dynamics of protein and its hydration water: Neutron scattering studies on fully deuterated GFP,” Biophys. J. 103(7), 15661575 (2012).
http://dx.doi.org/10.1016/j.bpj.2012.08.046
73.
J. D. Nickels, J. Atkinson, E. Papp-Szabo, C. Stanley, S. O. Diallo, S. Perticaroli, B. Baylis, P. Mahon, G. Ehlers, J. Katsaras, and J. R. Dutcher, “Structure and hydration of highly-branched, monodisperse phytoglycogen nanoparticles,” Biomacromolecules 17(3), 735743 (2016).
http://dx.doi.org/10.1021/acs.biomac.5b01393
74.
J. D. Nickels, S. Perticaroli, H. O’Neill, Q. Zhang, G. Ehlers, and A. P. Sokolov, “Coherent neutron scattering and collective dynamics in the protein, GFP,” Biophys. J. 105(9), 21822187 (2013).
http://dx.doi.org/10.1016/j.bpj.2013.09.029
75.
S. Perticaroli, J. D. Nickels, G. Ehlers, and A. P. Sokolov, “Rigidity, secondary structure, and the universality of the boson peak in proteins,” Biophys. J. 106(12), 26672674 (2014).
http://dx.doi.org/10.1016/j.bpj.2014.05.009
76.
S. Perticaroli, J. D. Nickels, G. Ehlers, H. O’Neill, Q. Zhang, and A. P. Sokolov, “Secondary structure and rigidity in model proteins,” Soft Matter 9(40), 95489556 (2013).
http://dx.doi.org/10.1039/c3sm50807b
77.
S. Perticaroli, J. D. Nickels, G. Ehlers, E. Mamontov, and A. P. Sokolov, “Dynamics and rigidity in an intrinsically disordered protein, beta-casein,” J. Phys. Chem. B 118(26), 73177326 (2014).
http://dx.doi.org/10.1021/jp503788r
78.
J. D. Nickels, S. Perticaroli, G. Ehlers, M. Feygenson, and A. P. Sokolov, “Rigidity of poly-l-glutamic acid scaffolds: Influence of secondary and supramolecular structure,” J. Biomed. Mater. Res., Part A 103(9), 29092918 (2015).
http://dx.doi.org/10.1002/jbm.a.35427
79.
B. Farago, A. Arbe, J. Colmenero, R. Faust, U. Buchenau, and D. Richter, “Intermediate length scale dynamics of polyisobutylene,” Phys. Rev. E 65, 051803 (2002).
http://dx.doi.org/10.1103/PhysRevE.65.051803
80.
T. Burankova, R. Hempelmann, A. Wildes, and J. P. Embs, “Collective ion diffusion and localized single particle dynamics in pyridinium-based ionic liquids,” J. Phys. Chem. B 118(49), 1445214460 (2014).
http://dx.doi.org/10.1021/jp5092416
81.
R. Bergman and J. Swenson, “Dynamics of supercooled water in confined geometry,” Nature 403(6767), 283286 (2000).
http://dx.doi.org/10.1038/35002027
82.
A. I. Kolesnikov, L. M. Anovitz, E. Mamontov, A. Podlesnyak, and G. Ehlers, “Strong anisotropic dynamics of ultra-confined water,” J. Phys. Chem. B 118(47), 1341413419 (2014).
http://dx.doi.org/10.1021/jp505355b
83.
A. I. Kolesnikov, G. F. Reiter, N. Choudhury, T. R. Prisk, E. Mamontov, A. Podlesnyak, G. Ehlers, A. G. Seel, D. J. Wesolowski, and L. M. Anovitz, “Quantum tunneling of water in beryl: A new state of the water molecule,” Phys. Rev. Lett. 116, 167802 (2016).
http://dx.doi.org/10.1103/PhysRevLett.116.167802
84.
C. Andreani, D. Colognesi, J. Mayers, G. F. Reiter, and R. Senesi, “Measurement of momentum distribution of light atoms and molecules in condensed matter systems using inelastic neutron scattering,” Adv. Phys. 54(5), 377469 (2005).
http://dx.doi.org/10.1080/00018730500403136
http://aip.metastore.ingenta.com/content/aip/journal/rsi/87/9/10.1063/1.4962024
Loading
/content/aip/journal/rsi/87/9/10.1063/1.4962024
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/87/9/10.1063/1.4962024
2016-09-13
2016-09-29

Abstract

The first eight years of operation of the Cold Neutron Chopper Spectrometer (CNCS) at the Spallation Neutron Source in Oak Ridge is being reviewed. The instrument has been part of the facility user program since 2009, and more than 250 individual user experiments have been performed to date. CNCS is an extremely powerful and versatile instrument and offers leading edge performance in terms of beam intensity, energy resolution, and flexibility to trade one for another. Experiments are being routinely performed with the sample at extreme conditions: ≲ 0.05 K, ≳ 2 GPa, and = 8 T can be achieved individually or in combination. In particular, CNCS is in a position to advance the state of the art with inelastic neutron scattering under pressure, and some of the recent accomplishments in this area will be presented in more detail.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/87/9/1.4962024.html;jsessionid=29hvIdZqGHKDtkH_7CcebNFB.x-aip-live-03?itemId=/content/aip/journal/rsi/87/9/10.1063/1.4962024&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=rsi.aip.org/87/9/10.1063/1.4962024&pageURL=http://scitation.aip.org/content/aip/journal/rsi/87/9/10.1063/1.4962024'
Right1,Right2,Right3,