Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/rsi/87/9/10.1063/1.4962241
1.
G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, Appl. Phys. Lett. 40, 178 (1982).
http://dx.doi.org/10.1063/1.92999
2.
S. C. White, U. R. Singh, and P. Wahl, Rev. Sci. Instrum. 82, 113708 (2011).
http://dx.doi.org/10.1063/1.3663611
3.
C. R. Ast, M. Assig, A. Ast, and K. Kern, Rev. Sci. Instrum. 79, 093704 (2008).
http://dx.doi.org/10.1063/1.2979008
4.
M. Okano, K. Kajimura, S. Wakiyama, F. Sakai, W. Mizutani, and M. Ono, J. Vac. Sci. Technol., A 5, 3313 (1987).
http://dx.doi.org/10.1116/1.574189
5.
Y. J. Song et al., Rev. Sci. Instrum. 81, 121101 (2010).
http://dx.doi.org/10.1063/1.3520482
6.
S. Misra et al., Rev. Sci. Instrum. 84, 103903 (2013).
http://dx.doi.org/10.1063/1.4822271
7.
K. Iwaya, R. Shimizu, T. Hashizume, and T. Hitosugi, Rev. Sci. Instrum. 82, 083702 (2011).
http://dx.doi.org/10.1063/1.3622507
8.
D. B. Newell et al., Rev. Sci. Instrum. 68, 3211 (1997).
http://dx.doi.org/10.1063/1.1148269
9.
H. Amick, B. Sennewald, N. C. Pardue, C. Teague, and B. Scace, Noise Control Eng. J. 46, 39 (1998).
http://dx.doi.org/10.3397/1.2828453
10.
A. Lassila et al., Measurement 44, 399 (2011).
http://dx.doi.org/10.1016/j.measurement.2010.10.013
11.
D. A. Muller et al., Ultramicroscopy 106, 1033 (2006).
http://dx.doi.org/10.1016/j.ultramic.2006.04.017
12.
W. R. Thornton, M. W. Trethewey, K. P. Maynard, and J. F. Sadler, Sound and Vibration 40, 10 (2006).
13.
E. Lortscher, D. Widmer, and B. Gotsmann, Nanoscale 5, 10542 (2013).
http://dx.doi.org/10.1039/c3nr03373b
14.
J. Winterflood, Ph.D. thesis, University of Western Australia, 2001.
15.
F. B. Segerink, J. P. Korterik, and H. L. Offerhaus, Rev. Sci. Instrum. 82, 065111 (2011).
http://dx.doi.org/10.1063/1.3602331
16.
A. M. Fraumeni, P. Heiland, and N. Judell, Proc. SPIE 5933, 59330T (2005).
http://dx.doi.org/10.1117/12.619404
http://aip.metastore.ingenta.com/content/aip/journal/rsi/87/9/10.1063/1.4962241
Loading
/content/aip/journal/rsi/87/9/10.1063/1.4962241
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/87/9/10.1063/1.4962241
2016-09-09
2016-09-27

Abstract

Measurement instruments and fabrication tools with spatial resolution on the atomic scale require facilities that mitigate the impact of vibration sources in the environment. One approach to protection from vibration in a building’s foundation is to place the instrument on a massive inertia block, supported on pneumatic isolators. This opens the questions of whether or not a massive floating block is susceptible to acoustic forces, and how to mitigate the effects of any such acoustic buffeting. Here this is investigated with quantitative measurements of vibrations and sound pressure, together with finite element modeling. It is shown that a particular concern, even in a facility with multiple acoustic enclosures, is the excitation of the lowest fundamental acoustic modes of the room by infrasound in the low tens of Hz range, and the efficient coupling of the fundamental room modes to a large inertia block centered in the room.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/87/9/1.4962241.html;jsessionid=pr4qqTHTmQoj970-9nPXf3-E.x-aip-live-03?itemId=/content/aip/journal/rsi/87/9/10.1063/1.4962241&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=rsi.aip.org/87/9/10.1063/1.4962241&pageURL=http://scitation.aip.org/content/aip/journal/rsi/87/9/10.1063/1.4962241'
Right1,Right2,Right3,