Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/rsi/87/9/10.1063/1.4962242
1.
E. Y. Ma, M. R. Calvo, J. Wang, B. Lian, M. Muhlbauer, C. Brune, Y. T. Cui, K. J. Lai, W. Kundhikanjana, Y. L. Yang, M. Baenninger, M. Konig, C. Ames, H. Buhmann, P. Leubner, L. W. Molenkamp, S. C. Zhang, D. Goldhaber-Gordon, M. A. Kelly, and Z. X. Shen, Nat. Commun. 6, 7252 (2015).
http://dx.doi.org/10.1038/ncomms8252
2.
M. Abu-Teir, M. Golosovsky, D. Davidov, A. Frenkel, and H. Goldberger, Rev. Sci. Instrum. 72, 2073 (2001).
http://dx.doi.org/10.1063/1.1351837
3.
V. V. Talanov and A. R. Schwartz, IEEE Trans. Microwave Theory Tech. 57, 1224 (2009).
http://dx.doi.org/10.1109/TMTT.2009.2017352
4.
D. E. Steinhauer, C. P. Vlahacos, F. C. Wellstood, S. M. Anlage, C. Canedy, R. Ramesh, A. Stanishevsky, and J. Melngailis, Rev. Sci. Instrum. 71, 2751 (2000).
http://dx.doi.org/10.1063/1.1150687
5.
T.-A. Massood and W. Yaqiang, IEEE Trans. Microwave Theory Tech. 52, 971 (2004).
http://dx.doi.org/10.1109/TMTT.2004.823596
6.
C. Gao, B. Hu, I. Takeuchi, K. S. Chang, X. D. Xiang, and G. Wang, Meas. Sci. Technol. 16, 248 (2005).
http://dx.doi.org/10.1088/0957-0233/16/1/033
7.
J. D. Chisum and Z. Popovic, IEEE Trans. Microwave Theory Tech. 60, 2605 (2012).
http://dx.doi.org/10.1109/TMTT.2012.2201739
8.
G. Gramse, E. Brinciotti, A. Lucibello, S. B. Patil, M. Kasper, C. Rankl, R. Giridharagopal, P. Hinterdorfer, R. Marcelli, and F. Kienberger, Nanotechnology 26, 135701 (2015).
http://dx.doi.org/10.1088/0957-4484/26/13/135701
9.
A. Imtiaz, T. Baldwin, H. T. Nembach, T. M. Wallis, and P. Kabos, Appl. Phys. Lett. 90, 243105 (2007).
http://dx.doi.org/10.1063/1.2748307
10.
K. Lai, W. Kundhikanjana, M. A. Kelly, Z. X. Shen, J. Shabani, and M. Shayegan, Phys. Rev. Lett. 107, 176809 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.176809
11.
A. P. Gregory, J. F. Blackburn, K. Lees, R. N. Clarke, T. E. Hodgetts, S. M. Hanham, and N. Klein, Ultramicroscopy 161, 137 (2016).
http://dx.doi.org/10.1016/j.ultramic.2015.11.015
12.
C. Gao and X.-D. Xiang, Rev. Sci. Instrum. 69, 3846 (1998).
http://dx.doi.org/10.1063/1.1149189
13.
E. Y. Ma, Y.-T. Cui, K. Ueda, S. Tang, K. Chen, N. Tamura, P. M. Wu, J. Fujioka, Y. Tokura, and Z.-X. Shen, Science 350, 538 (2015).
http://dx.doi.org/10.1126/science.aac8289
14.
A. Babajanyan, K. Lee, E. Lim, T. Manaka, M. Iwamoto, and B. Friedman, Appl. Phys. Lett. 90, 182104 (2007).
http://dx.doi.org/10.1063/1.2734500
15.
S.-C. Lee, C. P. Vlahacos, B. J. Feenstra, A. Schwartz, D. E. Steinhauer, F. C. Wellstood, and S. M. Anlage, Appl. Phys. Lett. 77, 4404 (2000).
http://dx.doi.org/10.1063/1.1332978
16.
C. Gao, B. Hu, P. Zhang, M. Huang, W. Liu, and I. Takeuchi, Appl. Phys. Lett. 84, 4647 (2004).
http://dx.doi.org/10.1063/1.1759389
17.
C. Riedel, A. Alegria, G. A. Schwartz, J. Colmenero, and J. J. Saenz, Nanotechnology 22, 285705 (2011).
http://dx.doi.org/10.1088/0957-4484/22/28/285705
18.
E. Castellano-Hernandez and G. M. Sacha, Appl. Phys. Lett. 100, 023101 (2012).
http://dx.doi.org/10.1063/1.3675446
19.
A. Guadarrama-Santana and A. Garcia-Valenzuela, Rev. Sci. Instrum. 80, 106101 (2009).
http://dx.doi.org/10.1063/1.3239406
20.
G. M. Sacha, IEEE Trans. Nanotechnol. 12, 152 (2013).
http://dx.doi.org/10.1109/TNANO.2012.2235081
21.
G. Gramse, G. Gomila, and L. Fumagalli, Nanotechnology 23, 205703 (2012).
http://dx.doi.org/10.1088/0957-4484/23/20/205703
22.
G. M. Sacha and J. J. Saenz, Appl. Phys. Lett. 85, 2610 (2004).
http://dx.doi.org/10.1063/1.1797539
23.
G. Gomila, G. Gramse, and L. Fumagalli, Nanotechnology 25, 255702 (2014).
http://dx.doi.org/10.1088/0957-4484/25/25/255702
24.
Y. L. Yang, E. Y. Ma, Y. T. Cui, A. Haemmerli, K. J. Lai, W. Kundhikanjana, N. Harjee, B. L. Pruitt, M. Kelly, and Z. X. Shen, J. Micromech. Microeng. 24, 045026 (2014).
http://dx.doi.org/10.1088/0960-1317/24/4/045026
25.
K. Lai, W. Kundhikanjana, M. A. Kelly, and Z. X. Shen, Appl. Phys. Lett. 93, 123105 (2008).
http://dx.doi.org/10.1063/1.2990638
26.
H. P. Huber, M. Moertelmaier, T. M. Wallis, C. J. Chiang, M. Hochleitner, A. Imtiaz, Y. J. Oh, K. Schilcher, M. Dieudonne, J. Smoliner, P. Hinterdorfer, S. J. Rosner, H. Tanbakuchi, P. Kabos, and F. Kienberger, Rev. Sci. Instrum. 81, 113701 (2010).
http://dx.doi.org/10.1063/1.3491926
27.
S. Hudlet, M. Saint Jean, C. Guthmann, and J. Berger, Eur. Phys. J. B 2, 5 (1998).
http://dx.doi.org/10.1007/s100510050219
28.
B. M. Law and F. Rieutord, Phys. Rev. B 66, 035402 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.035402
29.
A. Karbassi, D. Ruf, A. D. Bettermann, C. A. Paulson, D. W. van der Weide, H. Tanbakuchi, and R. Stancliff, Rev. Sci. Instrum. 79, 094706 (2008).
http://dx.doi.org/10.1063/1.2953095
30.
G. Bartolucci, G. M. Sardi, R. Marcelli, E. Proietti, A. Lucibello, E. Stoja, and F. Frezza, J. Appl. Phys. 118, 074503 (2015).
http://dx.doi.org/10.1063/1.4928466
31.
Z. Wei, Y. T. Cui, E. Y. Ma, S. Johnston, Y. Yang, R. Chen, M. Kelly, Z. X. Shen, and X. Chen, IEEE Trans. Microwave Theory Tech. 64, 1402 (2016).
http://dx.doi.org/10.1109/TMTT.2016.2537801
32.
L. Michalas, E. Brinciotti, A. Lucibello, G. Gramse, C. Joseph, F. Kienberger, E. Proietti, and R. Marcelli, Microelectron. Eng. 159, 64 (2016).
http://dx.doi.org/10.1016/j.mee.2016.02.039
33.
D. Ziegler and A. Stemmer, Nanotechnology 22, 075501 (2011).
http://dx.doi.org/10.1088/0957-4484/22/7/075501
34.
K. Lai, W. Kundhikanjana, M. Kelly, and Z. X. Shen, Rev. Sci. Instrum. 79, 063703 (2008).
http://dx.doi.org/10.1063/1.2949109
35.
Y. L. Yang, K. J. Lai, Q. C. Tang, W. Kundhikanjana, M. A. Kelly, K. Zhang, Z. X. Shen, and X. X. Li, J. Micromech. Microeng. 22, 115040 (2012).
http://dx.doi.org/10.1088/0960-1317/22/11/115040
36.
G. Gramse, M. Kasper, L. Fumagalli, G. Gomila, P. Hinterdorfer, and F. Kienberger, Nanotechnology 25, 145703 (2014).
http://dx.doi.org/10.1088/0957-4484/25/14/145703
http://aip.metastore.ingenta.com/content/aip/journal/rsi/87/9/10.1063/1.4962242
Loading
/content/aip/journal/rsi/87/9/10.1063/1.4962242
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/87/9/10.1063/1.4962242
2016-09-09
2016-10-01

Abstract

A quantitative approach is used to determine an effective height of probe beyond which the capacitance contribution is not significant in microwave impedance microscopy (MIM). We compare the effective height for three different modes of measurement, i.e., capacitance () ( is the tip-sample distance), derivative of capacitance (′()), and second derivative of capacitance (″()). We discuss the effects of tip geometry and sample properties such as relative permittivity and sample height on the effective height with examples and analyze the implication on the spatial resolution of MIM. Finally, our results are verified by microwave impedance microscopy (MIM) measurement.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/87/9/1.4962242.html;jsessionid=ux3rgRjZi4SrfCD7DkcLoEhI.x-aip-live-06?itemId=/content/aip/journal/rsi/87/9/10.1063/1.4962242&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=rsi.aip.org/87/9/10.1063/1.4962242&pageURL=http://scitation.aip.org/content/aip/journal/rsi/87/9/10.1063/1.4962242'
Right1,Right2,Right3,