Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai, and Y. Suzuki, Jpn. J. Appl. Phys., Part 2 42, L866 (2003).
A. Momose, W. Yashiro, Y. Takeda, Y. Suzuki, and T. Hattori, Jpn. J. Appl. Phys., Part 1 45, 5254 (2006).
T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, Opt. Express 13, 6296 (2005).
F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, Nat. Phys. 2, 258 (2006).
F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. H. Brönnimann, C. Grünzweig, and C. David, Nat. Mater. 7, 134 (2008).
W. Yashiro, S. Harasse, K. Kawabata, H. Kuwabara, T. Yamazaki, and A. Momose, Phys. Rev. B 84, 094106 (2011).
M. Bech, T. H. Jensen, O. Bunk, T. Donath, C. David, T. Weitkamp, G. Le Duc, A. Bravin, P. Cloetens, and F. Pfeiffer, Z. Med. Phys. 20, 7 (2010).
I. Zanette, T. Weitkamp, S. Lang, M. Langer, J. Mohr, C. David, and J. Baruchel, Phys. Status Solidi A 208, 2526 (2011).
M. Hoshino, K. Uesugi, T. Tsukube, and N. Yagi, J. Synchrotron Radiat. 21, 1347 (2014).
K. Takashima, M. Hoshino, K. Uesugi, N. Yagi, S. Matsuda, A. Nakahira, N. Osumi, M. Kohzuki, and H. Onodera, J. Synchrotron Radiat. 22, 136 (2015).
S. M. Walker, D. A. Schwyn, R. Mokso, M. Wicklein, T. Müller, M. Doube, M. Stampanoni, H. G. Krapp, and G. K. Taylor, PLoS Biology 12, e1001823 (2014).
T. dos Santos Rolo, A. Ershov, T. van de Kamp, and T. Baumbach, Proc. Natl. Acad. Sci. U. S. A. 111, 3921 (2014).
S. Goto, K. Takeshita, Y. Suzuki, H. Ohashi, Y. Asano, H. Kimura, T. Matsushita, N. Yagi, M. Isshiki, H. Yamazaki, Y. Yoneda, K. Umetani, and T. Ishikawa, Nucl. Instrum. Methods Phys. Res., Sect. A 467-468, 682 (2001).
M. Hoshino, K. Uesugi, and N. Yagi, AIP Conf. Proc. 1466, 255 (2012).
B. Pierscionek, M. Bahrami, M. Hoshino, K. Uesugi, J. Regini, and N. Yagi, Oncotarget 6, 30532 (2015).
T. Tsukube, N. Yagi, M. Hoshino, Y. Nakashima, K. Nakagawa, and Y. Okita, Gen. Thorac. Cardiovasc. Surg. 63, 590 (2015).
A. Momose, W. Yashiro, H. Maikusa, and Y. Takeda, Opt. Express 17, 12540 (2009).
I. Zanette, M. Bech, F. Pfeiffer, and T. Weitkamp, Appl. Phys. Lett. 98, 094101 (2011).
I. Zanette, M. Bech, A. Rack, G. Le Duc, P. Tafforeau, C. David, J. Mohr, F. Pfeiffer, and T. Weitkamp, Proc. Natl. Acad. Sci. U. S. A. 109, 10199 (2012).
M. P. Olbinado, P. Vagovič, W. Yashiro, and A. Momose, Appl. Phys. Express 6, 096601 (2013).
M. Hoshino, K. Uesugi, N. Yagi, and S. Mohri, AIP Conf. Proc. 1266, 57 (2010).
A. Limaye, “Drishti–volume exploration and presentation tool,” in Poster Presentation (IEEE Visualization, Baltimore, USA, 2006).
R. Mokso, F. Marone, D. Haberthür, J. C. Schittny, G. Mikuljan, A. Isenegger, and M. Stampanoni, AIP Conf. Proc. 1365, 38 (2011).
X. Xiao, F. Fusseis, and F. De Carlo, Proc. SPIE 8506, 85060K (2012).
H. Takano, M. Morikawa, S. Konishi, H. Azuma, S. Shimomura, Y. Tsusaka, S. Nakano, N. Kosaka, K. Yamamoto, and Y. Kagoshima, J. Phys.: Conf. Ser. 463, 012025 (2013).
A. Momose, W. Yashiro, S. Harasse, and H. Kuwabara, Opt. Express 19, 8423 (2011).
T. Sera, H. Yokota, K. Fujisaki, K. Fukasaku, H. Tachibana, K. Uesugi, N. Yagi, and R. Himeno, Phys. Med. Biol. 53, 4285 (2008).
S. Dubsky, S. B. Hooper, K. K. W. Siu, and A. Fouras, J. R. Soc., Interface 9, 2213 (2012).
R. Mokso, D. A. Schwyn, S. M. Walker, M. Doube, M. Wicklein, T. Müller, M. Stampanoni, G. K. Taylor, and H. G. Krapp, Sci. Rep. 5, 8727 (2015).
C. T. Badea, B. Fubara, L. W. Hedlund, and G. A. Johnson, Mol. Imaging 4, 110 (2005).
D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, J. Microsc. 206, 33 (2002).
S. Lang, I. Zanette, M. Dominietto, M. Langer, A. Rack, G. Schulz, G. Le Duc, C. David, J. Mohr, F. Pfeiffer, B. Müller, and T. Weitkamp, J. Appl. Phys. 116, 154903 (2014).

Data & Media loading...


Article metrics loading...



X-ray phase contrast tomography based on a grating interferometer was applied to fast and dynamic measurements of biological samples. To achieve this, the scanning procedure in the tomographic scan was improved. A triangle-shaped voltage signal from a waveform generator to a Piezo stage was used for the fast phase stepping in the grating interferometer. In addition, an optical fiber coupled x-ray scientific CMOS camera was used to achieve fast and highly efficient image acquisitions. These optimizations made it possible to perform an x-ray phase contrast tomographic measurement within an 8 min scan with density resolution of 2.4 mg/cm3. A maximum volume size of 13 × 13 × 6 mm3 was obtained with a single tomographic measurement with a voxel size of 6.5 m. The scanning procedure using the triangle wave was applied to four-dimensional measurements in which highly sensitive three-dimensional x-ray imaging and a time-resolved dynamic measurement of biological samples were combined. A fresh tendon in the tail of a rat was measured under a uniaxial stretching and releasing condition. To maintain the freshness of the sample during four-dimensional phase contrast tomography, the temperature of the bathing liquid of the sample was kept below 10° using a simple cooling system. The time-resolved deformation of the tendon and each fascicle was measured with a temporal resolution of 5.7 Hz. Evaluations of cross-sectional area size, length of the axis, and mass density in the fascicle during a stretching process provided a basis for quantitative analysis of the deformation of tendon fascicle.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd