Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
P. I. H. Bastiaens and A. Squire, Trends in Cell Biol. 9, 4852 (1999).
W. Becker, J. Microsc. 247(2), 119136 (2012).
M. Y. Berezin and S. Achilefu, Chem. Rev. 110(5), 26412684 (2010).
J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, New York, 2006).
K. Suhling, L. M. Hirvonen, J. A. Levitt, P.-H. Chung, C. Tregido, A. Le Marois, D. A. Rusakov, K. Zheng, S. Ameer-Beg, S. Poland, and S. Coelho, in Advanced Time-Correlated Single Photon Counting Applications, edited by W. Becker (Springer International Publishing, Berlin, Heidelberg, New York, 2015), pp. 119188.
J. R. Lakowicz and K. Berndt, Rev. Sci. Instrum. 62, 17271734 (1991).
T. B. Krasieva, C. Stringari, F. Liu, C. H. Sun, Y. Kong, M. Balu, F. L. Meyskens, E. Gratton, and B. J. Tromberg, J. Biomed. Opt. 18, 031107 (2013).
E. Gratton and B. Barbieri, Spectroscopy 1, 2836 (1986).
H. T. Chen, G. Holst, and E. Gratton, Microsc. Res. Tech. 78(12), 10751081 (2015).
E. P. Buurman, R. Sanders, A. Draaijer, H. C. Gerritsen, J. J. F. van Ween, P. M. Houpt, and Y. K. Levine, Scanning 14, 155159 (1992).
W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (Springer, Berlin, Heidelberg, New York, 2005).
K. Dowling, S. C. W. Hyde, J. C. Dainty, P. M. W. French, and J. D. Hares, Opt. Commun. 135(1-3), 2731 (1997).
Y. Sun, R. Liu, D. S. Elson, C. W. Hollars, J. A. Jo, J. Park, Y. Sun, and L. Marcu, Opt. Lett. 33(6), 630632 (2008).
D. R. Yankelevich, D. S. Elson, and L. Marcu, in Fluorescence Lifetime Spectroscopy and Imaging, edited by L. Marcu, P. W. M. French, and D. S. Elson (CRC Press, Boca Raton, London, New York, 2015).
A. D. Scully, A. J. Mac Robert, S. Botchway, P. O’Neill, A. W. Parker, R. B. Ostler, and D. Phillips, J. Fluoresc. 6(2), 119125 (1996).
W. Becker, V. I. Shcheslavskiy, and H. Studier, in Advanced Time-correlated Single Photon Counting Applications, edited by W. Becker (Springer, Berlin, Heidelberg, New York, 2015).
M. Straub and S. W. Hell, Appl. Phys. Lett. 73(13), 17691771 (1998).
W. Becker, A. Bergmann, M. A. Hink, K. König, K. Benndorf, and C. Biskup, Microsc. Res. Tech. 63(1), 5866 (2004).
K. Suhling, P. M. W. French, and D. Phillips, Photochem. Photobiol. Sci. 4, 1322 (2005).
L. Marcu, P. M. W. French, and D. S. Elson, Fluorescence Lifetime Spectroscopy and Imaging: Principles and Applications in Biomedical Diagnostics (CRC Press, Boca Raton, 2014).
W. Becker and A. Bergmann, in Handbook of Biomedical Nonlinear Optical Microscopy, edited by B. R. Masters and P. T. C. So (Oxford University Press, Oxford, 2008).
R. M. Ballew and J. N. Demas, Anal. Chem. 61(1), 3033 (1989).
H. C. Gerritsen, N. A. H. Asselbergs, A. V. Agronskaia, and W. G. J. H. M. Van Sark, J. Microsc. 206(3), 218224 (2002).
L. M. Hirvonen, F. Festy, and K. Suhling, Opt. Lett. 39(19), 56025605 (2014).
M. Prummer, C. G. Hübner, B. Sick, B. Hecht, A. Renn, and U. P. Wild, Anal. Chem. 72(3), 443447 (2000).
E. Gratton, S. Breusegem, J. Sutin, Q. Ruan, and N. Barry, J. Biomed. Opt. 8(3), 381390 (2003).
M. Köllner and J. Wolfrum, Chem. Phys. Lett. 200(1-2), 199204 (1992).
Q. L. Zhao, I. T. Young, and J. G. S. de Jong, J. Biomed. Opt. 16(8), 086007 (2011).
W. Becker, The bh TCSPC Handbook, 6th ed. (Becker & Hickl GmbH, 2015).
D. V. O’Connor and D. Phillips, Time-Correlated Single-Photon Counting (Academic Press, London, 1984).
W. Becker, A. Bergmann, and C. Biskup, Microsc. Res. Tech. 70(5), 403409 (2007).
W. Becker, V. Shcheslavskiy, S. Frere, and I. Slutsky, Microsc. Res. Tech. 77(3), 216224 (2014).
S. Frere and I. Slutsky, in Advanced Time-Correlated Single Photon Counting Applications, edited by W. Becker (Springer, Berlin, Heidelberg, New York, 2015).
V. I. Shcheslavskiy, A. Neubauer, R. Bukowiecki, F. Dinter, and W. Becker, Appl. Phys. Lett. 108(9), 091111 (2016).
H. Studier and W. Becker, Proc. SPIE 8948, 89481K (2014).
E. Charbon, M. Fishburn, R. Walker, R. Henderson, and C. Niclass, in TOF Range-Imaging Cameras, edited by F. Remondino and D. Stoppa (Springer, Berlin, Heidelberg, 2013), pp. 1138.
G. Giraud, H. Schulze, D. U. Li, T. T. Bachmann, J. Crain, D. Tyndall, J. Richardson, R. Walker, D. Stoppa, E. Charbon, R. Henderson, and J. Arlt, Biomed. Opt. Express 1(5), 13021308 (2010).
See for information about proximity sensing in mobile phones using photon time-of-flight measurements with SPAD arrays.
X. Michalet, R. A. Colyer, G. Scalia, A. Ingargiola, R. Lin, J. E. Millaud, S. Weiss, O. H. W. Siegmund, A. S. Tremsin, J. V. Vallerga, A. Cheng, M. Levi, D. Aharoni, K. Arisaka, F. Villa, F. Guerrieri, F. Panzeri, I. Rech, A. Gulinatti, F. Zappa, M. Ghioni, and S. Cova, Philos. Trans. R. Soc., B 368(1611), 20120035 (2013).
V. Emiliani, D. Sanvitto, M. Tramier, T. Piolot, Z. Petrášek, K. Kemnitz, C. Duneux, and M. Coppey-Moisan, Appl. Phys. Lett. 83(12), 24712473 (2003).
J. Milnes, J. S. Lapington, O. Jagutzki, and J. Howorth, Nucl. Instrum. Methods Phys. Res., Sect. A 604(1-2), 218220 (2009).
L. M. Hirvonen, Z. Petrášek, A. Beeby, and K. Suhling, New J. Phys. 17(2), 023032 (2015).
L. M. Hirvonen, Z. Petrášek, A. Beeby, and K. Suhling, Proc. SPIE 9329, 932939 (2015).
O. Jagutzki, V. Mergel, K. Ullmann-Pfleger, L. Spielberger, U. Meyer, R. Dörner, and H. Schmidt-Böcking, Proc. SPIE 3438, 322333 (1998).
O. Jagutzki, A. Czasch, and S. Schössler, Proc. SPIE 8727, 87270T (2013).
S. Schössler, B. Bromberger, M. Brandis, L. P. H. Schmidt, K. Tittelmeier, A. Czasch, V. Dangendorf, and O. Jagutzki, J. Instrum. 7, C02048 (2012).
S. Felekyan, R. Kühnemuth, V. Kudryavtsev, C. Sandhagen, W. Becker, and C. A. M. Seidel, Rev. Sci. Instrum. 76(8), 083104 (2005).
B. van Meurs and R. van der Werf, J. Phys. E: Sci. Instrum. 9(6), 437438 (1976).
C. C. Davis and T. A. King, J. Phys. A: Gen. Phys. 3(1), 101109 (1970).
M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juškaitis, and T. Wilson, J. Microsc. 203, 246257 (2001).
L. M. Hirvonen, W. Becker, J. Milnes, T. Conneely, S. Smietana, A. Le Marois, O. Jagutzki, and K. Suhling, Appl. Phys. Lett. 109, 071101 (2016).

Data & Media loading...


Article metrics loading...



We report on the implementation of a wide-field time-correlated single photon counting (TCSPC) method for fluorescence lifetime imaging (FLIM). It is based on a 40 mm diameter crossed delay line anode detector, where the readout is performed by three standard TCSPC boards. Excitation is performed by a picosecond diode laser with 50 MHz repetition rate. The photon arrival timing is obtained directly from the microchannel plates, with an instrumental response of ∼190 to 230 ps full width at half maximum depending on the position on the photocathode. The position of the photon event is obtained from the pulse propagation time along the two delay lines, one in x and one in y. One end of a delay line is fed into the “start” input of the corresponding TCSPC board, and the other end is delayed by 40 ns and fed into the “stop” input. The time between start and stop is directly converted into position, with a resolution of 200–250 m. The data acquisition software builds up the distribution of the photons over their spatial coordinates, x and y, and their times after the excitation pulses, typically into 512 × 512 pixels and 1024 time channels per pixel. We apply the system to fluorescence lifetime imaging of cells labelled with Alexa 488 phalloidin in an epi-fluorescence microscope and discuss the application of our approach to other fluorescence microscopy methods.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd