Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
G. Binning, C. F. Quate, and Ch. Gerber, Phys. Rev. Lett. 56, 930 (1986).
S. Kawai, N. Sasaki, and H. Kawakatsu, Phys. Rev. B 79, 195412 (2009).
S. Kawai, T. Glatzel, S. Koch, B. Such, A. Baratoff, and E. Meyer, Phys. Rev. B 81, 085420 (2010).
S. Kawai, A. S. Foster, F. F. Canova, H. Onodera, S. Kitamura, and E. Meyer, Nat. Commun. 5, 4403 (2014).
M. Ternes, C. P. Lutz, C. F. Hirjibehedin, F. J. Giessibl, and A. J. Heinrich, Science 319, 1066 (2008).
W. Allers, A. Schwarz, U. D. Schwarz, and R. Wiesendanger, Rev. Sci. Instrum. 69, 221 (1998).
H. J. Hug, B. Stiefel, P. J. A. van Schendel, A. Moser, S. Martin, and H. J. Guntherodt, Rev. Sci. Instrum. 70, 3625 (1999).
U. Kaiser, A. Schwarz, and R. Wiesendanger, Nature 446, 522 (2007).
F. J. Giessibl, F. Pielmeier, T. Eguchi, T. An, and Y. Hasegawa, Phys. Rev. B 84, 125409 (2011).
O. Karc, M. Dede, and A. Oral, Rev. Sci. Instrum. 85, 103705 (2014).
F. J. Giessibl, S. Hembacher, M. Herz, Ch. Schiller, and J. Mannhart, Nanotechnology 14, S79 (2004).
S. Torbrügge, O. Schaff, and J. Rychen, J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct. 28, C4E12 (2010).
F. J. Giessibl, Ch. Gerber, and G. Binnig, J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct. 9, 984 (1991).
K. Yokoyama, T. Ochi, T. Uchihashi, M. Ashino, Y. Sugawara, N. Suehira, and S. Morita, Rev. Sci. Instrum. 71, 128 (2000).
J. Lee, J. Chae, C. K. Kim, H. Kim, S. Oh, and Y. Kuk, Rev. Sci. Instrum. 76, 093701 (2005).
J. Bamidele, S. H. Lee, Y. Kinoshita, R. Turansky, Y. Naitoh, Y. J. Li, Y. Sugawara, I. Stich, and L. Kantorovich, Nat. Commun. 5, 4476 (2014).
N. Suehira, Y. Tomoyoshi, Y. Sugawara, and S. Morita, Rev. Sci. Instrum. 72, 2971 (2001).
T. Fukuma, Rev. Sci. Instrum. 80, 023707 (2009).
T. R. Albrecht, P. Grütter, D. Horne, and D. Rugar, J. Appl. Phys. 69, 668 (1991).
T. Fukuma, M. Kimura, K. Kobayashi, K. Matsushige, and H. Yamada, Rev. Sci. Instrum. 76, 053704 (2005).
J. Lübbe, M. Temmen, S. Rode, P. Rahe, A. Kühnle, and M. Reichling, Beilstein J. Nanotechnol. 4, 3244 (2013).
S. Hembacher, F. J. Giessibl, and J. Mannhart, Appl. Surf. Sci. 188, 445 (2002).
A. Yurtsever, Y. Sugimoto, M. Abe, and S. Morita, Nanotechnology 21, 165702 (2010).
U. Rabe, K. Janser, and W. Arnold, Rev. Sci. Instrum. 67, 9 (1996).
M. R. Castell, P. L. Wincott, N. G. Condon, C. Muggelberg, G. Thornton, S. L. Dudarev, A. P. Sutton, and G. A. D. Briggs, Phys. Rev. B 55, 7859 (1997).

Data & Media loading...


Article metrics loading...



The atomic force microscopy (AFM) is a very important tool for imaging and investigating the complex force interactions on sample surfaces with high spatial resolution. In the AFM, two types of detection systems of the tip-sample interaction forces have been used: an optical detection system and an electrical detection system. In optical detection systems, such as optical beam deflection system or optical fiber interferometer system, both the lateral and the vertical tip-sample forces can be measured simultaneously. In electrical detection systems, such as qPlus or Kolibri sensors, either the lateral or vertical forces can be measured. Simultaneous measurement of the lateral and vertical interaction forces effectively allows investigation of force interactions because the force is a vector with magnitude and direction. In this study, we developed a low-temperature, frequency-modulation AFM using an optical beam deflection system to simultaneously measure the vertical and lateral forces. In this system, the heat sources, such as a laser diode and a current-to-voltage converter, for measuring the photocurrent of the four-segmented photodiode are located outside the observation chamber to avoid a temperature increase of the AFM unit. The focused optical beam is three-dimensionally adjustable on the back side of the cantilever. We demonstrate low-noise displacement measurement of the cantilever and successful atomic resolution imaging using the vertical and lateral forces at low temperatures.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd