Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5(4), 186188 (2011).
S. A. Diddams, “The evolving optical frequency comb,” J. Opt. Soc. Am. B 27(11), B51B62 (2010).
T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 13351337 (2008).
I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351356 (2009).
A. K. Mills, T. J. Hammond, M. H. C. Lam, and D. J. Jones, “XUV frequency combs via femtosecond enhancement cavities,” J. Phys. B: At., Mol. Opt. Phys. 45(14), 142001 (2012).
F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163234 (2009).
C. Benko, T. K. Allison, A. Cingoz, L. Hua, F. Labaye, D. C. Yost, and J. Ye, “Extreme ultraviolet radiation with coherence time greater than 1 s,” Nat. Photonics 8(7), 530536 (2014).
F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: Technology and applications,” Annu. Rev. Anal. Chem. 3(1), 175205 (2010).
I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414426 (2016).
M. A. R. Reber, Y. Chen, and T. K. Allison, “Cavity-enhanced ultrafast spectroscopy: Ultrafast meets ultrasensitive,” Optica 3(3), 311317 (2016).
F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, “Phase-stabilized, 1.5 W frequency comb at 2.8–4.8 μm,” Opt. Lett. 34(9), 13301332 (2009).
A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet,” Nature 482(7383), 6871 (2012).
N. Leindecker, A. Marandi, R. L. Byer, K. L. Vodopyanov, J. Jiang, I. Hartl, M. Fermann, and P. G. Schunemann, “Octave-spanning ultrafast OPO with 2.6-6.1 micron instantaneous bandwidth pumped by femtosecond Tm-fiber laser,” Opt. Express 20(7), 70467053 (2012).
F. C. Cruz, D. L. Maser, T. Johnson, G. Ycas, A. Klose, F. R. Giorgetta, I. Coddington, and S. A. Diddams, “Mid-infrared optical frequency combs based on difference frequency generation for molecular spectroscopy,” Opt. Express 23(20), 2681426824 (2015).
R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 10491056 (1997).
M. E. Fermann and I. Hartl, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quantum Electron. 15(1), 191206 (2009).
H. Fattahi, H. G. Barros, M. Gorjan, T. Nubbemeyer, B. Alsaif, C. Y. Teisset, M. Schultze, S. Prinz, M. Haefner, M. Ueffing, A. Alismail, L. Vámos, A. Schwarz, O. Pronin, J. Brons, X. T. Geng, G. Arisholm, M. Ciappina, V. S. Yakovlev, D.-E. Kim, A. M. Azzeer, N. Karpowicz, D. Sutter, Z. Major, T. Metzger, and F. Krausz, “Third-generation femtosecond technology,” Optica 1(1), 4563 (2014).
V. Cautaerts, D. J. Richardson, R. Paschotta, and D. C. Hanna, “Stretched pulse Yb3+:silica fiber laser,” Opt. Lett. 22(5), 316318 (1997).
C. Hönninger, A. Giesen, G. Zhang, and U. Keller, “Femtosecond Yb:YAG laser using semiconductor saturable absorbers,” Opt. Lett. 20(23), 24022404 (1995).
T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35(2), 9496 (2010).
C. Jauregui, J. Limpert, and A. Tunnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861867 (2013).
T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355359 (2008).
L. Kuznetsova, F. W. Wise, S. Kane, and J. Squier, “Chirped-pulse amplification near the gain-narrowing limit of Yb-doped fiber using a reflection grism compressor,” Appl. Phys. B 88(4), 515518 (2007).
J. Zhao, W. Li, C. Wang, Y. Liu, and H. Zeng, “Pre-chirping management of a self-similar Yb-fiber amplifier towards 80 W average power with sub-40 fs pulse generation,” Opt. Express 22(26), 3221432219 (2014).
W. Liu, D. N. Schimpf, T. Eidam, J. Limpert, A. Tünnermann, F. X. Kärtner, and G. Chang, “Pre-chirp managed nonlinear amplification in fibers delivering 100 W, 60 fs pulses,” Opt. Lett. 40(2), 151154 (2015).
I. Hartl, T. R. Schibli, A. Marcinkevicius, D. C. Yost, D. D. Hudson, M. E. Fermann, and J. Ye, “Cavity-enhanced similariton Yb-fiber laser frequency comb: 3 × 1014 W/cm2 peak intensity at 136 MHz,” Opt. Lett. 32(19), 28702872 (2007).
A. Ruehl, A. Marcinkevicius, M. E. Fermann, and I. Hartl, “80 W, 120 fs Yb-fiber frequency comb,” Opt. Lett. 35(18), 30153017 (2010).
L. Nugent-Glandorf, T. A. Johnson, Y. Kobayashi, and S. A. Diddams, “Impact of dispersion on amplitude and frequency noise in a Yb-fiber laser comb,” Opt. Lett. 36(9), 15781580 (2011).
R. J. Jones and J. Ye, “Femtosecond pulse amplification by coherent addition in a passive optical cavity,” Opt. Lett. 27(20), 18481850 (2002).
R. J. Jones and J. Ye, “High-repetition-rate coherent femtosecond pulse amplification withan external passive optical cavity,” Opt. Lett. 29(23), 28122814 (2004).
H. Carstens, N. Lilienfein, S. Holzberger, C. Jocher, T. Eidam, J. Limpert, A. Tünnermann, J. Weitenberg, D. C. Yost, A. Alghamdi, Z. Alahmed, A. Azzeer, A. Apolonski, E. Fill, F. Krausz, and I. Pupeza, “Megawatt-scale average-power ultrashort pulses in an enhancement cavity,” Opt. Lett. 39(9), 25952598 (2014).
J. Paul, J. Johnson, J. Lee, and R. J. Jones, “Generation of high-power frequency combs from injection-locked femtosecond amplification cavities,” Opt. Lett. 33(21), 24822484 (2008).
A. Chong, L. G. Wright, and F. W. Wise, “Ultrafast fiber lasers based on self-similar pulse evolution: A review of current progress,” Rep. Prog. Phys. 78(11), 113901 (2015).
A. Fernández, K. Jespersen, L. Zhu, L. Grüner-Nielsen, A. Baltuška, A. Galvanauskas, and A. J. Verhoef, “High-fidelity, 160 fs, 5 μJ pulses from an integrated Yb-fiber laser system with a fiber stretcher matching a simple grating compressor,” Opt. Lett. 37(5), 927929 (2012).
J. M. Dudley, C. Finot, D. J. Richardson, and G. Millot, “Self-similarity in ultrafast nonlinear optics,” Nat. Phys. 3(9), 597603 (2007).
M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 60106013 (2000).
G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic Press, 2008).
G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2012).
M. T. Asaki, C.-P. Huang, D. Garvey, J. Zhou, H. C. Kapteyn, and M. M. Murnane, “Generation of 11-fs pulses from a self-mode-locked ti:sapphire laser,” Opt. Lett. 18(12), 977979 (1993).
A. Stingl, R. Szipöcs, M. Lenzner, Ch. Spielmann, and F. Krausz, “Sub-10-fs mirror-dispersion-controlled Ti:sapphire laser,” Opt. Lett. 20(6), 602604 (1995).
S. Kobtsev, S. Kukarin, and Y. Fedotov, “Ultra-low repetition rate mode-locked fiber laser with high-energy pulses,” Opt. Express 16(26), 2193621941 (2008).
N. G. Usechak, G. P. Agrawal, and J. D. Zuegel, “Tunable, high-repetition-rate, harmonically mode-locked ytterbium fiber laser,” Opt. Lett. 29(12), 13601362 (2004).
A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14(21), 1009510100 (2006).
S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28(8), 806807 (1992).
M. Baumgartl, C. Lecaplain, A. Hideur, J. Limpert, and A. Tünnermann, “66 W average power from a microjoule-class sub-100 fs fiber oscillator,” Opt. Lett. 37(10), 16401642 (2012).
R. Paschotta, “Noise of mode-locked lasers (Part I): Numerical model,” Appl. Phys. B 79(2), 153162 (2004).
R. Paschotta, “Noise of mode-locked lasers (Part II): Timing jitter and other fluctuations,” Appl. Phys. B 79(2), 163173 (2004).
I. Hartl, G. Imeshev, L. Dong, G. C. Cho, and M. E. Fermann, “Ultra-compact dispersion compensated femtosecond fiber oscillators and amplifiers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies (Optical Society of America, 2005), p. CThG1.
X. Zhou, D. Yoshitomi, Y. Kobayashi, and K. Torizuka, “Generation of 28-fs pulses from a mode-locked ytterbium fiber oscillator,” Opt. Express 16(10), 70557059 (2008).
J. R. Buckley, S. W. Clark, and F. W. Wise, “Generation of ten-cycle pulses from an ytterbium fiber laser with cubic phase compensation,” Opt. Lett. 31(9), 13401342 (2006).
M. Hofer, M. H. Ober, F. Haberl, and M. E. Fermann, “Characterization of ultrashort pulse formation in passively mode-locked fiber lasers,” IEEE J. Quantum Electron. 28(3), 720728 (1992).
A. Weiner, Ultrafast Optics (Wiley, 2009).
N. Newbury, “Understanding noise sources and stabilization strategies in frequency combs–part 2,” in Winter College on Optics: Optical Frequency Combs (International Centre for Theoretical Physics, 2016).
L. C. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited article: A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86(8), 081301 (2015).
The quiet Yb-oscillators described in Refs. 22 and 27 actually use a combination of both NPE and the SESAM.
F. Ö Ilday, C. J, and F. X. Kärtner, “Generation of sub-100-fs pulses at up to 200 MHz repetition rate from a passively mode-locked Yb-doped fiber laser,” Opt. Express 13(7), 27162721 (2005).
N. R. Newbury and W. C. Swann, “Low-noise fiber-laser frequency combs (invited),” J. Opt. Soc. Am. B 24(8), 17561770 (2007).
K. J. Bock, “Femtosecond fiber lasers,” Ph.D. thesis, School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Canada, 2012.
J. K. Ranka, A. L. Gaeta, A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, “Autocorrelation measurement of 6-fs pulses based on the two-photon-induced photocurrent in a GaAsP photodiode,” Opt. Lett. 22(17), 13441346 (1997).
W. H. Knox, “In situ measurement of complete intracavitydispersion in an operating Ti:sapphire femtosecond laser,” Opt. Lett. 17(7), 514516 (1992).
A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Broadband phase noise suppression in a Yb-fiber frequency comb,” Opt. Lett. 36(5), 743745 (2011).
Y. Song, C. Kim, K. Jung, H. Kim, and J. Kim, “Timing jitter optimization of mode-locked Yb-fiber lasers toward the attosecond regime,” Opt. Express 19(15), 1451814525 (2011).
Th. Udem, “The frequency comb (r)evolution,” in Winter College on Optics: Optical Frequency Combs–From Multispecies Gas Sensing to High Precision Interrogation of Atomic and Molecular Targets (International Centre for Theoretical Physics, 2016).
Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Accurate measurement of large optical frequency differences with a mode-locked laser,” Opt. Lett. 24(13), 881883 (1999).
K. Saha, Y. Okawachi, B. Shim, J. S. Levy, R. Salem, A. R. Johnson, M. A. Foster, M. R. E. Lamont, M. Lipson, and A. L. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Express 21(1), 13351343 (2013).
M. Kourogi, K. Nakagawa, and M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29(10), 26932701 (1993).
N. Kuse, C.-C. Lee, J. Jiang, C. Mohr, T. R. Schibli, and M. E. Fermann, “Ultra-low noise all polarization-maintaining Er fiber-based optical frequency combs facilitated with a graphene modulator,” Opt. Express 23(19), 2434224350 (2015).
D. D. Hudson, K. W. Holman, R. J. Jones, S. T. Cundiff, J. Ye, and D. J. Jones, “Mode-locked fiber laser frequency-controlled with an intracavity electro-optic modulator,” Opt. Lett. 30(21), 29482950 (2005).
W. Zhang, M. Lours, M. Fischer, R. Holzwarth, G. Santarelli, and Y. L. Coq, “Characterizing a fiber-based frequency comb with electro-optic modulator,” IEEE Trans. Sonics Ultrason. 59(3), 432438 (2012).
K. Iwakuni, H. Inaba, Y. Nakajima, T. Kobayashi, K. Hosaka, A. Onae, and F.-L. Hong, “Narrow linewidth comb realized with a mode-locked fiber laser using an intra-cavity waveguide electro-optic modulator for high-speed control,” Opt. Express 20(13), 1376913776 (2012).
W. C. Swann, E. Baumann, F. R. Giorgetta, and N. R. Newbury, “Microwave generation with low residual phase noise from a femtosecond fiber laser with an intracavity electro-optic modulator,” Opt. Express 19(24), 2438724395 (2011).
Y. Nakajima, H. Inaba, K. Hosaka, K. Minoshima, A. Onae, M. Yasuda, T. Kohno, S. Kawato, T. Kobayashi, T. Katsuyama, and F.-L. Hong, “A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator,” Opt. Express 18(2), 16671676 (2010).
C. Benko, A. Ruehl, M. J. Martin, K. S. E. Eikema, M. E. Fermann, I. Hartl, and J. Ye, “Full phase stabilization of a Yb:fiber femtosecond frequency comb via high-bandwidth transducers,” Opt. Lett. 37(12), 21962198 (2012).
C.-C. Lee, C. Mohr, J. Bethge, S. Suzuki, M. E. Fermann, I. Hartl, and T. R. Schibli, “Frequency comb stabilization with bandwidth beyond the limit of gain lifetime by an intracavity graphene electro-optic modulator,” Opt. Lett. 37(15), 30843086 (2012).
T. Hellwig, S. Rieger, and C. Fallnich, “Toward an all-optically stabilized frequency comb based on a mode-locked fiber laser,” Opt. Lett. 39(3), 525527 (2014).
C. Bao, A. C. Funk, C. Yang, and S. T. Cundiff, “Pulse dynamics in a mode-locked fiber laser and its quantum limited comb frequency uncertainty,” Opt. Lett. 39(11), 32663269 (2014).
N. Kuse, Y. Nomura, A. Ozawa, M. Kuwata-Gonokami, S. Watanabe, and Y. Kobayashi, “Self-compensation of third-order dispersion for ultrashort pulse generation demonstrated in an Yb fiber oscillator,” Opt. Lett. 35(23), 38683870 (2010).
M. Hyodo, K. S. Abedin, and N. Onodera, “Generation of millimeter-wave signals up to 70.5 GHz by heterodyning of two extended-cavity semiconductor lasers with an intracavity electro-optic crystal,” Opt. Commun. 171(1–3), 159169 (1999).
E. D. Black, “An introduction to Pound-Drever-Hall laser stabilization,” Am. J. Phys. 69, 79 (2001).
R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97105 (1983).
C. Li, E. Moon, and Z. Chang, “Carrier-envelope phase shift caused by variation of grating separation,” Opt. Lett. 31(21), 31133115 (2006).
E. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5(9), 454458 (1969).
S. Wise, V. Quetschke, A. J. Deshpande, G. Mueller, D. H. Reitze, D. B. Tanner, B. F. Whiting, Y. Chen, A. Tünnermann, E. Kley, and T. Clausnitzer, “Phase effects in the diffraction of light: Beyond the grating equation,” Phys. Rev. Lett. 95, 013901 (2005).
S. Zhou, L. Kuznetsova, A. Chong, and F. W. Wise, “Compensation of nonlinear phase shifts with third-order dispersion in short-pulse fiber amplifiers,” Opt. Express 13(13), 48694877 (2005).
F. Röser, J. Rothhard, B. Ortac, A. Liem, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “131 W 220 fs fiber laser system,” Opt. Lett. 30(20), 27542756 (2005).
Z. Zhao and Y. Kobayashi, “Ytterbium fiber-based, 270 fs, 100 W chirped pulse amplification laser system with 1 MHz repetition rate,” Appl. Phys. Express 9(1), 012701 (2016).
M. Wunram, P. Storz, D. Brida, and A. Leitenstorfer, “Ultrastable fiber amplifier delivering 145-fs pulses with 6-μJ energy at 10-MHz repetition rate,” Opt. Lett. 40(5), 823826 (2015).
A. Ruehl, “Advances in Yb:fiber frequency comb technology,” Opt. Photonics News 23, 30 (2012).
A. Sheyerman, G. Levy, A. Damascelli, A. K. Mills, S. Zhadnovich, and D. J. Jones, “An XUV source using a femtosecond enhancement cavity for photoemission spectroscopy,” Proc. SPIE 9512, 95121I (2015).
T.-H. Wu, D. Carlson, and R. J. Jones, “A high-power fiber laser system for dual-comb spectroscopy in the vacuum-ultraviolet,” in Frontiers in Optics 2013 (Optical Society of America, 2013), p. FTu2A.4.
A. Offner and D. Conn, U.S. patent 3748015 (24 July 1973).
G. Cheriaux, B. Walker, L. F. Dimauro, P. Rousseau, F. Salin, and J. P. Chambaret, “Aberration-free stretcher design for ultrashort-pulse amplification,” Opt. Lett. 21(6), 414416 (1996).
S. Kane and J. Squier, “Fourth-order-dispersion limitations of aberration-free chirped-pulse amplification systems,” J. Opt. Soc. Am. B 14(5), 12371244 (1997).
L. Kuznetsova, F. W. Wise, S. Kane, and J. Squier, “Chirped-pulse amplification near the gain-narrowing limit of an Yb-doped fiber amplifier using a reflection grism compressor,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (Optical Society of America, 2007), p. CMEE7.
A. E. Siegman, Lasers (University Science Books, 1986).
T. Gherman and D. Romanini, “Modelocked cavity–enhanced absorption spectroscopy,” Opt. Express 10(19), 10331042 (2002).
C. Corder, P. Zhao, X. L. Li, A. R. Muraca, M. D. Kershis, M. G. White, and T. K. Allison, “Ultrafast XUV pulses at high repetition rate for time resolved photoelectron spectroscopy of surface dynamics,” in Bulletin of the Americal Physical Society, 47th Annual Meeting of the APS Division of Atomic, Molecular and Optical Physics (DAMOP) (Americal Physical Society, 2016).
S. Davis, M. Farnik, D. Uy, and D. J. Nesbitt, “Concentration modulation spectroscopy with a pulsed slit supersonic discharge expansion source,” Chem. Phys. Lett. 344(1–2), 2330 (2001).
J. Ye, L.-S. Ma, and J. L. Hall, “Ultrasensitive detections in atomic and molecular physics: Demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B 15(1), 615 (1998).
Cavity Enhanced Spectroscopy and Sensing, edited by G. Gagliardi and H.-P. Loock (Springer, 2013).
J.-K. Wang, Q. Liu, and A. H. Zewail, “Solvation ultrafast dynamics of reactions. 9. femtosecond studies of dissociation and recombination of iodine in argon clusters,” J. Phys. Chem. 99(29), 1130911320 (1995).
T. Brabec and F. Krausz, “Intense few cycle laser fields: Frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545591 (2000).
M. Chini, K. Zhao, and Z. Chang, “The generation, characterization and applications of broadband isolated attosecond pulses,” Nat. Photonics 8(3), 178186 (2014).
S. Passlack, S. Mathias, O. Andreyev, D. Mittnacht, M. Aeschlimann, and M. Bauer, “Space charge effects in photoemission with a low repetition, high intensity femtosecond laser source,” J. Appl. Phys. 100(2), 024912 (2006).
A. S. Sandhu, E. Gagnon, R. Santra, V. Sharma, W. Li, P. Ho, P. Ranitovic, C. L. Cocke, M. M. Murnane, and H. C. Kapteyn, “Observing the creation of electronic Feshbach resonances in soft x-ray-induced O2 dissociation,” Science 322(5904), 10811085 (2008).
C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436(7048), 234237 (2005).
R. J. Jones, K. D. Moll, M. J. Thorpe, and J. Ye, “Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity,” Phys. Rev. Lett. 94(19), 193201 (2005).
T. K. Allison, A. Cingöz, D. C. Yost, and J. Ye, “Extreme nonlinear optics in a femtosecond enhancement cavity,” Phys. Rev. Lett. 107, 183903 (2011).
D. R. Carlson, J. Lee, J. Mongelli, E. M. Wright, and R. J. Jones, “Intracavity ionization and pulse formation in femtosecond enhancement cavities,” Opt. Lett. 36(15), 29912993 (2011).
D. C. Yost, A. Cingöz, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Power optimization of XUV frequency combs for spectroscopy applications [invited],” Opt. Express 19(23), 2348323493 (2011).
S. Holzberger, N. Lilienfein, H. Carstens, T. Saule, M. Högner, F. Lücking, M. Trubetskov, V. Pervak, T. Eidam, J. Limpert, A. Tünnermann, E. Fill, F. Krausz, and I. Pupeza, “Femtosecond enhancement cavities in the nonlinear regime,” Phys. Rev. Lett. 115, 023902 (2015).
I. Pupeza, M. Högner, J. Weitenberg, S. Holzberger, D. Esser, T. Eidam, J. Limpert, A. Tünnermann, E. Fill, and V. S. Yakovlev, “Cavity-enhanced high-harmonic generation with spatially tailored driving fields,” Phys. Rev. Lett. 112, 103902 (2014).
J. Lee, D. R. Carlson, and R. J. Jones, “Optimizing intracavity high harmonic generation for XUV fs frequency combs,” Opt. Express 19(23), 2331523326 (2011).
F. Frassetto, C. Cacho, C. A. Froud, I. C. Edmund Turcu, P. Villoresi, W. A. Bryan, E. Springate, and L. Poletto, “Single-grating monochromator for extreme-ultraviolet ultrashort pulses,” Opt. Express 19(20), 1916919181 (2011).
S. H. Chew, K. Pearce, C. SPath, A. Guggenmos, J. Schmidt, F. Sussman, M. F. Kling, U. Kleinberg, E. Marsell, A. L. Cord, E. Lorek, P. Rudawski, C. Guo, M. Miranda, F. Ardana, J. Mauritsson, A. L’Huillier, and A. Mikkelsen, “Imaging localized surface plasmons by femtosecond to attosecond time-resolved photoelectron emission microscopy,” in Attosecond Nanophysics (Wiley-VCH Verlag, 2015).
M. Plotzing, R. Adam, C. Weier, L. Plucinski, S. Eich, S. Emmerich, M. Rollinger, M. Aeschlimann, S. Mathias, and C. M. Schneider, “Spin-resolved photoelectron spectroscopy using femtosecond extreme ultraviolet light pulses from high-order harmonic generation,” Rev. Sci. Instrum. 87(4), 043903 (2016).

Data & Media loading...


Article metrics loading...



We present a detailed description of the design, construction, and performance of high-power ultrafast Yb:fiber laser frequency combs in operation in our laboratory. We discuss two such laser systems: an 87 MHz, 9 W, 85 fs laser operating at 1060 nm and an 87 MHz, 80 W, 155 fs laser operating at 1035 nm. Both are constructed using low-cost, commercially available components, and can be assembled using only basic tools for cleaving and splicing single-mode fibers. We describe practical methods for achieving and characterizing low-noise single-pulse operation and long-term stability from Yb:fiber oscillators based on nonlinear polarization evolution. Stabilization of the combs using a variety of transducers, including a new method for tuning the carrier-envelope offset frequency, is discussed. High average power is achieved through chirped-pulse amplification in simple fiber amplifiers based on double-clad photonic crystal fibers. We describe the use of these combs in several applications, including ultrasensitive femtosecond time-resolved spectroscopy and cavity-enhanced high-order harmonic generation.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd