Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
G. D. Cole, W. Zhang, M. J. Martin, J. Ye, and M. Aspelmeyer, Nat. Photon. 7, 644 (2013).
B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, Nature 506, 71 (2014).
W. Zhang, M. J. Martin, C. Benko, J. L. Hall, J. Ye, C. Hagemann, T. Legero, U. Sterr, F. Riehle, G. D. Cole, and M. Aspelmeyer, Opt. Lett. 39, 1980 (2014).
H. Q. Chen, Y. Y. Jiang, Z. Y. Bi, and L. S. Ma, Sci. China: Technol. Sci. 56, 1589 (2013).
A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gursel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K, S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, Science 256, 325 (1992).
LIGO Science Collaboration, Classical Quant. Grav. 32, 074001 (2015).
S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, and A. Ashkin, Phys. Rev. Lett. 55, 48 (1985).
P. D. Lett, R. N. Watts, C. I. Westbrook, W. D. Phillips, P. L. Gould, and H. J. Metcalf, Phys. Rev. Lett. 61, 169 (1988).
E. S. Shuman, J. F. Barry, and D. DeMille, Nature 467, 820 (2010).
M. Yeo, M. T. Hummon, A. L. Collopy, B. Yan, B. Hemmerling, E. Chae, J. M. Doyle, and J. Ye, Phys. Rev. Lett. 114, 223003 (2015).
W. M. Itano and D. J. Wineland, Phys. Rev. A 25, 35 (1982).
B. Yan, S. A. Moses, B. Gadway, J. P. Covey, K. R. A. Hazzard, A. M. Rey, D. S. Jin, and J. Ye, Nature 501, 521 (2013).
S. A. Moses, J. P. Covey, M. T. Miecnikowski, B. Yan, B. Gadway, J. Ye, and D. S. Jin, Science 350, 659 (2015).
E. Riedle, S. H. Ashworth, J. T. Farrell, and D. J. Nesbitt, Rev. Sci. Instrum. 65, 42 (1994).
S. Uetake, K. Matsubara, H. Ito, K. Hayasaka, and M. Hosokawa, Appl. Phys. B 97, 413 (2009).
P. Bohlouli-Zanjani, K. Afrousheh, and J. D. D. Martin, Rev. Sci. Instrum. 77, 093105 (2006).
R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
E. D. Black, Am. J. Phys. 69, 79 (2001).
J. F. Barry, Ph.D. thesis, Yale, 2013.
D. P. Dai, Y. Xia, Y. N. Yin, X. X. Yang, Y. F. Fang, X. J. Li, and J. P. Yin, Opt. Exp. 22, 28645 (2014).
Y. N. Yin, Y. Xia, X. J. Li, X. X. Yang, S. P. Xu, and J. P. Yin, Appl. Phys. Exp. 8, 092701 (2015).
D. N. Fang and C. Q. Li, J. Mat. Sci. 34, 4001 (1999).
L. L. Fan, J. Chen, S. Li, H. J. Kang, L. J. Liu, L. Fang, and X. R. Xing, Appl. Phys. Lett. 102, 022905 (2013).
E. A. Donley, T. P. Heavner, F. Levi, M. O. Tataw, and S. R. Jefferts, Rev. Sci. Instrum. 76, 063112 (2005).

Data & Media loading...


Article metrics loading...



The transfer cavity is a very important frequency reference for laser stabilization and is widely used for applications such as precision measurements and laser cooling of ions or molecules. But the non-linear response of the piezoelectric ceramic transducer (PZT) in the Fabry-Perot cavity limits the performance of the laser stabilization. Thus, measuring and controlling such non-linearity is essential. Here we report an , optical method to characterize this non-linearity by measuring the resonant signals of a dual-frequency laser. The differential measurement makes it insensitive to the laser and cavity drifts, while maintaining a very high sensitivity. It can be applied for various applications with PZTs, especially in an optical lab.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd