1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Measurements of light absorption efficiency in InSb nanowires
Rent:
Rent this article for
Access full text Article
/content/aip/journal/sdy/1/1/10.1063/1.4833559
1.
1. P. D. Yang, R. X. Yan, and M. Fardy, Nano Lett. 10(5), 1529 (2010).
http://dx.doi.org/10.1021/nl100665r
2.
2. Y. Li, F. Qian, J. Xiang, and C. M. Lieber, Mater. Today 9(10), 18 (2006).
http://dx.doi.org/10.1016/S1369-7021(06)71650-9
3.
3. R. X. Yan, D. Gargas, and P. D. Yang, Nat. Photonics 3(10), 569 (2009).
http://dx.doi.org/10.1038/nphoton.2009.184
4.
4. N. Mingo, Appl. Phys. Lett. 84(14), 2652 (2004).
http://dx.doi.org/10.1063/1.1695629
5.
5. N. Nakpathomkun, H. Q. Xu, and H. Linke, Phys. Rev. B 82(23), 235428 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.235428
6.
6. C. X. Lin and M. L. Povinelli, Appl. Phys. Lett. 97(7), 071110 (2010).
http://dx.doi.org/10.1063/1.3475484
7.
7. J. Kupec, R. L. Stoop, and B. Witzigmann, Opt. Express 18(26), 27589 (2010).
http://dx.doi.org/10.1364/OE.18.027589
8.
8. J. Kupec and B. Witzigmann, Opt. Express 17(12), 10399 (2009).
http://dx.doi.org/10.1364/OE.17.010399
9.
9. P. M. Wu, N. Anttu, H. Q. Xu, L. Samuelson, and M. E. Pistol, Nano Lett. 12(4), 1990 (2012).
http://dx.doi.org/10.1021/nl204552v
10.
10. L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, Nano Lett. 10(2), 439 (2010).
http://dx.doi.org/10.1021/nl9036627
11.
11. S. L. Diedenhofen, O. T. A. Janssen, G. Grzela, E. P. A. M. Bakkers, and J. G. Rivas, ACS Nano 5(3), 2316 (2011).
http://dx.doi.org/10.1021/nn103596n
12.
12. M. Lindenberg, I. Kang, S. L. Johnson, T. Missalla, P. A. Heimann, Z. Chang, J. Larsson, P. H. Bucksbaum, H. C. Kapteyn, H. A. Padmore, R. W. Lee, J. S. Wark, and R. W. Falcone, Phys. Rev. Lett. 84(1), 111 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.111
13.
13. J. Larsson, E. Judd, R. W. Falcone, A. Asfaw, R. W. Lee, P. A. Heimann, H. A. Padmore, and J. Wark, Inst. Phys. Conf. Ser. 151, 367 (1996).
14.
14. M. Lindenberg, J. Larsson, K. Sokolowski-Tinten, K. J. Gaffney, C. Blome, O. Synnergren, J. Sheppard, C. Caleman, A. G. MacPhee, D. Weinstein, D. P. Lowney, T. K. Allison, T. Matthews, R. W. Falcone, A. L. Cavalieri, D. M. Fritz, S. H. Lee, P. H. Bucksbaum, D. A. Reis, J. Rudati, P. H. Fuoss, C. C. Kao, D. P. Siddons, R. Pahl, J. Als-Nielsen, S. Duesterer, R. Ischebeck, H. Schlarb, H. Schulte-Schrepping, T. Tschentscher, J. Schneider, D. von der Linde, O. Hignette, F. Sette, H. N. Chapman, R. W. Lee, T. N. Hansen, S. Techert, J. S. Wark, M. Bergh, G. Huldt, D. van der Spoel, N. Timneanu, J. Hajdu, R. A. Akre, E. Bong, P. Krejcik, J. Arthur, S. Brennan, K. Luening, and J. B. Hastings, Science 308(5720), 392 (2005).
http://dx.doi.org/10.1126/science.1107996
15.
15. M. Lindenberg, S. Engemann, K. J. Gaffney, K. Sokolowski-Tinten, J. Larsson, P. B. Hillyard, D. A. Reis, D. M. Fritz, J. Arthur, R. A. Akre, M. J. George, A. Deb, P. H. Bucksbaum, J. Hajdu, D. A. Meyer, M. Nicoul, C. Blome, T. Tschentscher, A. L. Cavalieri, R. W. Falcone, S. H. Lee, R. Pahl, J. Rudati, P. H. Fuoss, A. J. Nelson, P. Krejcik, D. P. Siddons, P. Lorazo, and J. B. Hastings, Phys. Rev. Lett. 100(13), 135502 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.135502
16.
16. M. Bargheer, N. Zhavoronkov, Y. Gritsai, J. C. Woo, D. S. Kim, M. Woerner, and T. Elsaesser, Science 306(5702), 1771 (2004).
http://dx.doi.org/10.1126/science.1104739
17.
17. P. Sondhauss, J. Larsson, M. Harbst, G. A. Naylor, A. Plech, K. Scheidt, O. Synnergren, M. Wulff, and J. S. Wark, Phys. Rev. Lett. 94(12), 125509 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.125509
18.
18. S. O. Mariager, D. Khakhulin, H. T. Lemke, K. S. Kjaer, L. Guerin, L. Nuccio, C. B. Sorensen, M. M. Nielsen, and R. Feidenhans'l, Nano Lett. 10(7), 2461 (2010).
http://dx.doi.org/10.1021/nl100798y
19.
19. H. Chin, R. W. Schoenlein, T. E. Glover, P. Balling, W. P. Leemans, and C. V. Shank, Phys. Rev. Lett. 83(2), 336 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.336
20.
20. H. M. Vandriel, Phys. Rev. B 35(15), 8166 (1987).
http://dx.doi.org/10.1103/PhysRevB.35.8166
21.
21. P. Caroff, M. E. Messing, B. M. Borg, K. A. Dick, K. Deppert, and L. E. Wernersson, Nanotechnology 20(49), 495606 (2009).
http://dx.doi.org/10.1088/0957-4484/20/49/495606
22.
22. H. Enquist, H. Navirian, R. Nuske, C. V. Schmising, A. Jurgilaitis, M. Herzog, M. Bargheer, P. Sondhauss, and J. Larsson, Opt. Lett. 35(19), 3219 (2010).
http://dx.doi.org/10.1364/OL.35.003219
23.
23. E. Warren, X-ray diffraction (Addison-Wesley, Reading, MA, 1969), pp. x.
24.
24. O. Synnergren, T. N. Hansen, S. Canton, H. Enquist, P. Sondhauss, A. Srivastava, and J. Larsson, Appl. Phys. Lett. 90(17), 171929 (2007).
http://dx.doi.org/10.1063/1.2734369
25.
25. E. Aspnes and A. A. Studna, Phys. Rev. B 27(2), 985 (1983).
http://dx.doi.org/10.1103/PhysRevB.27.985
26.
26. P. Sondhauss, O. Synnergren, T. N. Hansen, S. E. Canton, H. Enquist, A. Srivastava, and J. Larsson, Phys. Rev. B 78(11), 115202 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.115202
27.
27. N. Mingo and D. A. Broido, Phys. Rev. Lett. 93(24), 246106 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.246106
http://aip.metastore.ingenta.com/content/aip/journal/sdy/1/1/10.1063/1.4833559
Loading
/content/aip/journal/sdy/1/1/10.1063/1.4833559
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/sdy/1/1/10.1063/1.4833559
2013-12-10
2014-09-20

Abstract

We report on measurements of the light absorption efficiency of InSb nanowires. The absorbed 70 fs light pulse generates carriers, which equilibrate with the lattice via electron-phonon coupling. The increase in lattice temperature is manifested as a strain that can be measured with X-ray diffraction. The diffracted X-ray signal from the excited sample was measured using a streak camera. The amount of absorbed light was deduced by comparing X-ray diffraction measurements with simulations. It was found that 3.0(6)% of the radiation incident on the sample was absorbed by the nanowires, which cover 2.5% of the sample.

Loading

Full text loading...

/deliver/fulltext/aip/journal/sdy/1/1/1.4833559.html;jsessionid=5874ss4m991n1.x-aip-live-03?itemId=/content/aip/journal/sdy/1/1/10.1063/1.4833559&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/sdy
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Measurements of light absorption efficiency in InSb nanowires
http://aip.metastore.ingenta.com/content/aip/journal/sdy/1/1/10.1063/1.4833559
10.1063/1.4833559
SEARCH_EXPAND_ITEM