1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Topical Review: Molecular reaction and solvation visualized by time-resolved X-ray solution scattering: Structure, dynamics, and their solvent dependence
Rent:
Rent this article for
Access full text Article
/content/aip/journal/sdy/1/1/10.1063/1.4865234
1.
1. G. R. Fleming, Annu. Rev. Phys. Chem. 37, 81 (1986).
http://dx.doi.org/10.1146/annurev.pc.37.100186.000501
2.
2. N. F. Scherer, R. J. Carlson, A. Matro, M. Du, A. J. Ruggiero, V. Romero-Rochin, J. A. Cina, G. R. Fleming, and S. A. Rice, J. Chem. Phys. 95, 1487 (1991).
http://dx.doi.org/10.1063/1.461064
3.
3. C. E. Crespo-Hernandez, B. Cohen, and B. Kohler, Nature 436, 1141 (2005).
http://dx.doi.org/10.1038/nature03933
4.
4. D. Polli, P. Altoe, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, and G. Cerullo, Nature 467, 440 (2010).
http://dx.doi.org/10.1038/nature09346
5.
5. J. Herbst, K. Heyne, and R. Diller, Science 297, 822 (2002).
http://dx.doi.org/10.1126/science.1072144
6.
6. E. T. J. Nibbering, H. Fidder, and E. Pines, Annu. Rev. Phys. Chem. 56, 337 (2005).
http://dx.doi.org/10.1146/annurev.physchem.56.092503.141314
7.
7. W. J. Schreier, T. E. Schrader, F. O. Koller, P. Gilch, C. E. Crespo-Hernández, V. N. Swaminathan, T. Carell, W. Zinth, and B. Kohler, Science 315, 625 (2007).
http://dx.doi.org/10.1126/science.1135428
8.
8. J. M. Friedman, D. L. Rousseau, and M. R. Ondrias, Annu. Rev. Phys. Chem. 33, 471 (1982).
http://dx.doi.org/10.1146/annurev.pc.33.100182.002351
9.
9. H. Hamaguchi and T. L. Gustafson, Annu. Rev. Phys. Chem. 45, 593 (1994).
http://dx.doi.org/10.1146/annurev.pc.45.100194.003113
10.
10. P. Kukura, D. W. McCamant, S. Yoon, D. B. Wandschneider, and R. A. Mathies, Science 310, 1006 (2005).
http://dx.doi.org/10.1126/science.1118379
11.
11. P. Kukura, D. W. McCamant, and R. A. Mathies, Annu. Rev. Phys. Chem. 58, 461 (2007).
http://dx.doi.org/10.1146/annurev.physchem.58.032806.104456
12.
12. D. M. Jonas, Annu. Rev. Phys. Chem. 54, 425 (2003).
http://dx.doi.org/10.1146/annurev.physchem.54.011002.103907
13.
13. T. Brixner, T. Mančal, I. V. Stiopkin, and G. R. Fleming, J. Chem. Phys. 121, 4221 (2004).
http://dx.doi.org/10.1063/1.1776112
14.
14. M. Cho, Chem. Rev. 108, 1331 (2008).
http://dx.doi.org/10.1021/cr078377b
15.
15. C. Consani, G. Auböck, F. van Mourik, and M. Chergui, Science 339, 1586 (2013).
http://dx.doi.org/10.1126/science.1230758
16.
16. B. A. West and A. M. Moran, J. Phys. Chem. Lett. 3, 2575 (2012).
http://dx.doi.org/10.1021/jz301048n
17.
17. M. C. Asplund, M. T. Zanni, and R. M. Hochstrasser, Proc. Natl. Acad. Sci. U.S.A. 97, 8219 (2000).
http://dx.doi.org/10.1073/pnas.140227997
18.
18. P. Hamm, J. Helbing, and J. Bredenbeck, Annu. Rev. Phys. Chem. 59, 291 (2008).
http://dx.doi.org/10.1146/annurev.physchem.59.032607.093757
19.
19. M. D. Fayer, Annu. Rev. Phys. Chem. 60, 21 (2009).
http://dx.doi.org/10.1146/annurev-physchem-073108-112712
20.
20. C. H. B. Cruz, R. L. Fork, W. H. Knox, and C. V. Shank, Chem. Phys. Lett. 132, 341 (1986).
http://dx.doi.org/10.1016/0009-2614(86)80622-4
21.
21. T. J. Kang, J. Yu, and M. Berg, J. Chem. Phys. 94, 2413 (1991).
http://dx.doi.org/10.1063/1.459865
22.
22. H. Murakami, S. Kinoshita, Y. Hirata, T. Okada, and N. Mataga, J. Chem. Phys. 97, 7881 (1992).
http://dx.doi.org/10.1063/1.463463
23.
23. M. A. Kahlow, W. o. Jarzȩba, T. J. Kang, and P. F. Barbara, J. Chem. Phys. 90, 151 (1989).
http://dx.doi.org/10.1063/1.456520
24.
24. R. Jimenez, G. R. Fleming, P. V. Kumar, and M. Maroncelli, Nature 369, 471 (1994).
http://dx.doi.org/10.1038/369471a0
25.
25. M. L. Horng, J. A. Gardecki, A. Papazyan, and M. Maroncelli, J. Phys. Chem. 99, 17311 (1995).
http://dx.doi.org/10.1021/j100048a004
26.
26. L. Reynolds, J. A. Gardecki, S. J. V. Frankland, M. L. Horng, and M. Maroncelli, J. Phys. Chem. 100, 10337 (1996).
http://dx.doi.org/10.1021/jp953110e
27.
27. G. R. Fleming and M. Cho, Annu. Rev. Phys. Chem. 47, 109 (1996).
http://dx.doi.org/10.1146/annurev.physchem.47.1.109
28.
28. T. Joo, Y. Jia, J.-Y. Yu, M. J. Lang, and G. R. Fleming, J. Chem. Phys. 104, 6089 (1996).
http://dx.doi.org/10.1063/1.471276
29.
29. W. P. de Boeij, M. S. Pshenichnikov, and D. A. Wiersma, Annu. Rev. Phys. Chem. 49, 99 (1998).
http://dx.doi.org/10.1146/annurev.physchem.49.1.99
30.
30. C. J. Bardeen, S. J. Rosenthal, and C. V. Shank, J. Phys. Chem. A 103, 10506 (1999).
http://dx.doi.org/10.1021/jp991974k
31.
31. D. S. Larsen, K. Ohta, and G. R. Fleming, J. Chem. Phys. 111, 8970 (1999).
http://dx.doi.org/10.1063/1.480240
32.
32. A. M. Moran, S. Park, and N. F. Scherer, Chem. Phys. 341, 344 (2007).
http://dx.doi.org/10.1016/j.chemphys.2007.09.001
33.
33. S. Park, J. Kim, and N. F. Scherer, Phys. Chem. Chem. Phys. 14, 8116 (2012).
http://dx.doi.org/10.1039/c2cp40519a
34.
34. D. F. Underwood and D. A. Blank, J. Phys. Chem. A 107, 956 (2003).
http://dx.doi.org/10.1021/jp027134e
35.
35. D. F. Underwood and D. A. Blank, J. Phys. Chem. A 109, 3295 (2005).
http://dx.doi.org/10.1021/jp044187i
36.
36. H. Ihee, M. Lorenc, T. K. Kim, Q. Kong, M. Cammarata, J. H. Lee, S. Bratos, and M. Wulff, Science 309, 1223 (2005).
http://dx.doi.org/10.1126/science.1114782
37.
37. A. Plech, M. Wulff, S. Bratos, F. Mirloup, R. Vuilleumier, F. Schotte, and P. A. Anfinrud, Phys. Rev. Lett. 92, 125505 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.125505
38.
38. J. Davidsson, J. Poulsen, M. Cammarata, P. Georgiou, R. Wouts, G. Katona, F. Jacobson, A. Plech, M. Wulff, G. Nyman, and R. Neutze, Phys. Rev. Lett. 94, 245503 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.245503
39.
39. T. K. Kim, M. Lorenc, J. H. Lee, M. Russo, J. Kim, M. Cammarata, Q. Kong, S. Noel, A. Plech, M. Wulff, and H. Ihee, Proc. Natl. Acad. Sci. U.S.A. 103, 9410 (2006).
http://dx.doi.org/10.1073/pnas.0601958103
40.
40. M. Cammarata, M. Lorenc, T. K. Kim, J. H. Lee, Q. Kong, E. Pontecorvo, M. Lo Russo, G. Schiro, A. Cupane, M. Wulff, and H. Ihee, J. Chem. Phys. 124, 124504 (2006).
http://dx.doi.org/10.1063/1.2176617
41.
41. J. H. Lee, K. H. Kim, T. K. Kim, Y. Lee, and H. Ihee, J. Chem. Phys. 125, 174504 (2006).
http://dx.doi.org/10.1063/1.2386158
42.
42. Q. Kong, M. Wulff, J. H. Lee, S. Bratos, and H. Ihee, J. Am. Chem. Soc. 129, 13584 (2007).
http://dx.doi.org/10.1021/ja073503e
43.
43. J. H. Lee, J. Kim, M. Cammarata, Q. Kong, K. H. Kim, J. Choi, T. K. Kim, M. Wulff, and H. Ihee, Angew. Chem. Int. Ed. 47, 1047 (2008).
http://dx.doi.org/10.1002/anie.200704150
44.
44. J. H. Lee, T. K. Kim, J. Kim, Q. Kong, M. Cammarata, M. Lorenc, M. Wulff, and H. Ihee, J. Am. Chem. Soc. 130, 5834 (2008).
http://dx.doi.org/10.1021/ja710267u
45.
45. Q. Kong, J. H. Lee, A. Plech, M. Wulff, H. Ihee, and M. H. J. Koch, Angew. Chem. Int. Ed. 47, 5550 (2008).
http://dx.doi.org/10.1002/anie.200801153
46.
46. M. Cammarata, M. Levantino, F. Schotte, P. A. Anfinrud, F. Ewald, J. Choi, A. Cupane, M. Wulff, and H. Ihee, Nat. Methods 5, 881 (2008).
http://dx.doi.org/10.1038/nmeth.1255
47.
47. H. Ihee, Acc. Chem. Res. 42, 356 (2009).
http://dx.doi.org/10.1021/ar800168v
48.
48. T. K. Kim, J. H. Lee, M. Wulff, Q. Kong, and H. Ihee, ChemPhysChem 10, 1958 (2009).
http://dx.doi.org/10.1002/cphc.200900154
49.
49. K. Haldrup, M. Christensen, M. Cammarata, Q. Kong, M. Wulff, S. O. Mariager, K. Bechgaard, R. Feidenhans'l, N. Harrit, and M. M. Nielsen, Angew. Chem. Int. Ed. 48, 4180 (2009).
http://dx.doi.org/10.1002/anie.200900741
50.
50. M. Christensen, K. Haldrup, K. Bechgaard, R. Feidenhans'l, Q. Kong, M. Cammarata, M. Lo Russo, M. Wulff, N. Harrit, and M. M. Nielsen, J. Am. Chem. Soc. 131, 502 (2009).
http://dx.doi.org/10.1021/ja804485d
51.
51. Q. Kong, J. H. Lee, M. Lo Russo, T. K. Kim, M. Lorenc, M. Cammarata, S. Bratos, T. Buslaps, V. Honkimaki, H. Ihee, and M. Wulff, Acta Cryst. A 66, 252 (2010).
http://dx.doi.org/10.1107/S0108767309054993
52.
52. Q. Kong, J. H. Lee, K. H. Kim, J. Kim, M. Wulff, H. Ihee, and M. H. Koch, J. Am. Chem. Soc. 132, 2600 (2010).
http://dx.doi.org/10.1021/ja9097548
53.
53. S. Jun, J. H. Lee, J. Kim, K. H. Kim, Q. Kong, T. K. Kim, M. Lo Russo, M. Wulff, and H. Ihee, Phys. Chem. Chem. Phys. 12, 11536 (2010).
http://dx.doi.org/10.1039/c002004d
54.
54. S. Westenhoff, E. Malmerberg, D. Arnlund, L. Johansson, E. Nazarenko, M. Cammarata, J. Davidsson, V. Chaptal, J. Abramson, G. Katona, A. Menzel, and R. Neutze, Nat. Methods 7, 775 (2010).
http://dx.doi.org/10.1038/nmeth1010-775c
55.
55. H. S. Cho, N. Dashdorj, F. Schotte, T. Graber, R. Henning, and P. Anfinrud, Proc. Natl. Acad. Sci. U.S.A. 107, 7281 (2010).
http://dx.doi.org/10.1073/pnas.1002951107
56.
56. J. Kim, K. H. Kim, J. G. Kim, T. W. Kim, Y. Kim, and H. Ihee, J. Phys. Chem. Lett. 2, 350 (2011).
http://dx.doi.org/10.1021/jz101503r
57.
57. J. Kim, J. H. Lee, J. Kim, S. Jun, K. H. King, T. W. Kim, M. Wulff, and H. Ihee, J. Phys. Chem. A 116, 2713 (2012).
http://dx.doi.org/10.1021/jp2078314
58.
58. M. Cammarata, M. Levantino, M. Wulff, and A. Cupane, J. Mol. Biol. 400, 951 (2010).
http://dx.doi.org/10.1016/j.jmb.2010.05.057
59.
59. T. W. Kim, J. H. Lee, J. Choi, K. H. Kim, L. J. van Wilderen, L. Guerin, Y. Kim, Y. O. Jung, C. Yang, J. Kim, M. Wulff, J. J. van Thor, and H. Ihee, J. Am. Chem. Soc. 134, 3145 (2012).
http://dx.doi.org/10.1021/ja210435n
60.
60. J. H. Lee, M. Wulff, S. Bratos, J. Petersen, L. Guerin, J.-C. Leicknam, M. Cammarata, Q. Kong, J. Kim, K. B. Møller, and H. Ihee, J. Am. Chem. Soc. 135, 3255 (2013).
http://dx.doi.org/10.1021/ja312513w
61.
61. K. H. Kim, H. Ki, K. Y. Oang, S. Nozawa, T. Sato, J. Kim, T. K. Kim, J. Kim, S.-i. Adachi, and H. Ihee, ChemPhysChem 14, 3687 (2013).
http://dx.doi.org/10.1002/cphc.201300713
62.
62. L. Salassa, E. Borfecchia, T. Ruiu, C. Garino, D. Gianolio, R. Gobetto, P. J. Sadler, M. Cammarata, M. Wulff, and C. Lamberti, Inorg. Chem. 49, 11240 (2010).
http://dx.doi.org/10.1021/ic102021k
63.
63. J. Vincent, M. Andersson, M. Eklund, A. B. Wohri, M. Odelius, E. Malmerberg, Q. Y. Kong, M. Wulff, R. Neutze, and J. Davidsson, J. Chem. Phys. 130, 154502 (2009).
http://dx.doi.org/10.1063/1.3111401
64.
64. K. Haldrup, T. Harlang, M. Christensen, A. Dohn, T. B. van Driel, K. S. Kjaer, N. Harrit, J. Vibenholt, L. Guerin, M. Wulff, and M. M. Nielsen, Inorg. Chem. 50, 9329 (2011).
http://dx.doi.org/10.1021/ic2006875
65.
65. E. Malmerberg, Z. Omran, J. S. Hub, X. W. Li, G. Katona, S. Westenhoff, L. C. Johansson, M. Andersson, M. Cammarata, M. Wulff, D. van der Spoel, J. Davidsson, A. Specht, and R. Neutze, Biophys. J. 101, 1345 (2011).
http://dx.doi.org/10.1016/j.bpj.2011.07.050
66.
66. S. Ibrahimkutty, P. Wagener, A. Menzel, A. Plech, and S. Barcikowski, Appl. Phys. Lett. 101, 103104 (2012).
http://dx.doi.org/10.1063/1.4750250
67.
67. K. Haldrup, G. Vanko, W. Gawelda, A. Galler, G. Doumy, A. M. March, E. P. Kanter, A. Bordage, A. Dohn, T. B. van Driel, K. S. Kjaer, H. T. Lemke, S. E. Canton, J. Uhlig, V. Sundstrom, L. Young, S. H. Southworth, M. M. Nielsen, and C. Bressler, J. Phys. Chem. A 116, 9878 (2012).
http://dx.doi.org/10.1021/jp306917x
68.
68. S. Ibrahimkutty, J. Kim, M. Cammarata, F. Ewald, J. Choi, H. Ihee, and A. Plech, ACS Nano 5, 3788 (2011).
http://dx.doi.org/10.1021/nn200120e
69.
69. A. Plech, V. Kotaidis, A. Siems, and M. Sztucki, Phys. Chem. Chem. Phys. 10, 3888 (2008).
http://dx.doi.org/10.1039/b716599d
70.
70. A. Spilotros, M. Levantino, G. Schiro, M. Cammarata, M. Wulff, and A. Cupane, Soft Matter 8, 6434 (2012).
http://dx.doi.org/10.1039/c2sm25676b
71.
71. M. Andersson, E. Malmerberg, S. Westenhoff, G. Katona, M. Cammarata, A. B. Wohri, L. C. Johansson, F. Ewald, M. Eklund, M. Wulff, J. Davidsson, and R. Neutze, Structure 17, 1265 (2009).
http://dx.doi.org/10.1016/j.str.2009.07.007
72.
72. R. Neutze, R. Wouts, S. Techert, J. Davidsson, M. Kocsis, A. Kirrander, F. Schotte, and N. Wulff, Phys. Rev. Lett. 87, 195508 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.195508
73.
73. K. H. Kim, S. Muniyappan, K. Y. Oang, J. G. Kim, S. Nozawa, T. Sato, S. Y. Koshihara, R. Henning, I. Kosheleva, H. Ki, Y. Kim, T. W. Kim, J. Kim, S. Adachi, and H. Ihee, J. Am. Chem. Soc. 134, 7001 (2012).
http://dx.doi.org/10.1021/ja210856v
74.
74. D. E. Moilanen, D. Wong, D. E. Rosenfeld, E. E. Fenn, and M. D. Fayer, Proc. Natl. Acad. Sci. U.S.A. 106, 375 (2009).
http://dx.doi.org/10.1073/pnas.0811489106
75.
75. I. A. Heisler and S. R. Meech, Science 327, 857 (2010).
http://dx.doi.org/10.1126/science.1183799
76.
76. D. Laage, G. Stirnemann, F. Sterpone, R. Rey, and J. T. Hynes, Annu. Rev. Phys. Chem. 62, 395 (2011).
http://dx.doi.org/10.1146/annurev.physchem.012809.103503
77.
77. U. Banin, A. Waldman, and S. Ruhman, J. Chem. Phys. 96, 2416 (1992).
http://dx.doi.org/10.1063/1.462041
78.
78. U. Banin and S. Ruhman, J. Chem. Phys. 98, 4391 (1993).
http://dx.doi.org/10.1063/1.465066
79.
79. T. Kuhne and P. Vohringer, J. Chem. Phys. 105, 10788 (1996).
http://dx.doi.org/10.1063/1.472887
80.
80. A. E. Johnson and A. B. Myers, J. Phys. Chem. 100, 7778 (1996).
http://dx.doi.org/10.1021/jp953052x
81.
81. T. Kuhne, R. Kuster, and P. Vohringer, Chem. Phys. 233, 161 (1998).
http://dx.doi.org/10.1016/S0301-0104(97)00354-6
82.
82. T. Kuhne and P. Vohringer, J. Phys. Chem. A 102, 4177 (1998).
http://dx.doi.org/10.1021/jp973154i
83.
83. E. Gershgoren, U. Banin, and S. Ruhman, J. Phys. Chem. A 102, 9 (1998).
http://dx.doi.org/10.1021/jp972138i
84.
84. L. Zhu, K. Takahashi, M. Saeki, T. Tsukuda, and T. Nagata, Chem. Phys. Lett. 350, 233 (2001).
http://dx.doi.org/10.1016/S0009-2614(01)01288-X
85.
85. H. Sato, F. Hirata, and A. B. Myers, J. Phys. Chem. A 102, 2065 (1998).
http://dx.doi.org/10.1021/jp9732827
86.
86. C. J. Margulis, D. F. Coker, and R. M. Lynden-Bell, Chem. Phys. Lett. 341, 557 (2001).
http://dx.doi.org/10.1016/S0009-2614(01)00548-6
87.
87. C. J. Margulis, D. F. Coker, and R. M. Lynden-Bell, J. Chem. Phys. 114, 367 (2001).
http://dx.doi.org/10.1063/1.1328757
88.
88. F. S. Zhang and R. M. Lynden-Bell, Phys. Rev. Lett. 90, 185505 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.185505
89.
89. P. W. Anderson, Science 177, 393 (1972).
http://dx.doi.org/10.1126/science.177.4047.393
90.
90. G. Z. Liu and G. Cheng, Phys. Rev. B 65, 132513 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.132513
91.
91. L. D. Landau and E. M. Lifshitz, Statistical Physics (Pergamon Press, Oxford, 1969).
92.
92. Y. Ogawa, O. Takahashi, and O. Kikuchi, J. Mol. Struct. (THEOCHEM) 424, 285 (1998).
http://dx.doi.org/10.1016/S0166-1280(97)00155-3
93.
93. T. Koslowski and P. Vohringer, Chem. Phys. Lett. 342, 141 (2001).
http://dx.doi.org/10.1016/S0009-2614(01)00567-X
94.
94. S. Westenhoff, E. Nazarenko, E. Malmerberg, J. Davidsson, G. Katona, and R. Neutze, Acta Crystallogr. A 66, 207 (2010).
http://dx.doi.org/10.1107/S0108767309054361
95.
95. H. Sakane, T. Mitsui, H. Tanida, and I. Watanabe, J. Synchrotron Radiat. 8, 674 (2001).
http://dx.doi.org/10.1107/S0909049500017179
96.
96. P. Lindqvist-Reis, K. Lamble, S. Pattanaik, I. Persson, and M. Sandstrom, J. Phys. Chem. B 104, 402 (2000).
http://dx.doi.org/10.1021/jp992101t
97.
97. V. Vchirawongkwin, B. M. Rode, and I. Persson, J. Phys. Chem. B 111, 4150 (2007).
http://dx.doi.org/10.1021/jp0702402
98.
98. M. Matsugami, T. Takamuku, T. Otomo, and T. Yamaguchi, J. Phys. Chem. B 110, 12372 (2006).
http://dx.doi.org/10.1021/jp061456r
99.
99. T. Takamuku, H. Maruyama, S. Kittaka, S. Takahara, and T. Yamaguchi, J. Phys. Chem. B 109, 892 (2005).
http://dx.doi.org/10.1021/jp047359k
100.
100. T. Takamuku, Y. Tsutsumi, M. Matsugami, and T. Yamaguchi, J. Phys. Chem. B 112, 13300 (2008).
http://dx.doi.org/10.1021/jp804495n
101.
101. K. Fujii, R. Kanzaki, T. Takamuku, Y. Kameda, S. Kohara, M. Kanakubo, M. Shibayama, S. Ishiguro, and Y. Umebayashi, J. Chem. Phys. 135, 244502 (2011).
http://dx.doi.org/10.1063/1.3672097
102.
102. D. Xiao, L. G. Hines, S. F. Li, R. A. Bartsch, E. L. Quitevis, O. Russina, and A. Triolo, J. Phys. Chem. B 113, 6426 (2009).
http://dx.doi.org/10.1021/jp8102595
103.
103. B. L. Bhargava, M. L. Klein, and S. Balasubramanian, ChemPhysChem 9, 67 (2008).
http://dx.doi.org/10.1002/cphc.200700666
104.
104. M. Kanakubo, T. Umecky, Y. Hiejima, T. Aizawa, H. Nanjo, and Y. Kameda, J. Phys. Chem. B 109, 13847 (2005).
http://dx.doi.org/10.1021/jp052354o
105.
105. K. H. Kim, J. H. Lee, J. Kim, S. Nozawa, T. Sato, A. Tomita, K. Ichiyanagi, H. Ki, J. Kim, S. Adachi, and H. Ihee, Phys. Rev. Lett. 110, 165505 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.165505
106.
106. J.-D. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys. 10, 6615 (2008).
http://dx.doi.org/10.1039/b810189b
107.
107. K. A. Peterson, B. C. Shepler, D. Figgen, and H. Stoll, J. Phys. Chem. A 110, 13877 (2006).
http://dx.doi.org/10.1021/jp065887l
108.
108. E. Cances, B. Mennucci, and J. Tomasi, J. Chem. Phys. 107, 3032 (1997).
http://dx.doi.org/10.1063/1.474659
109.
109. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, H. P. H. X. Li, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, Jr., F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, M. C. J. Tomasi, J. M. M. N. Rega, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Revision D.01, Gaussian, Inc., Wallingford, CT, 2009.
110.
110. R. M. Kumar, M. Elango, R. Parthasarathi, and V. Subramanian, J. Phys. Chem. A 115, 12841 (2011).
http://dx.doi.org/10.1021/jp203984z
111.
111. M. Bargheer, P. Dietrich, K. Donovang, and N. Schwentner, J. Chem. Phys. 111, 8556 (1999).
http://dx.doi.org/10.1063/1.480196
112.
112. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, New York, 1999).
113.
113. R. Zadoyan, M. Sterling, M. Ovchinnikov, and V. A. Apkarian, J. Chem. Phys. 107, 8446 (1997).
http://dx.doi.org/10.1063/1.475045
114.
114. J. Xu, N. Schwentner, and M. Chergui, J. Chem. Phys. 101, 7381 (1994).
http://dx.doi.org/10.1063/1.468296
115.
115. N. F. Scherer, D. M. Jonas, and G. R. Fleming, J. Chem. Phys. 99, 153 (1993).
http://dx.doi.org/10.1063/1.465795
116.
116. X. B. Xu, S. C. Yu, R. Lingle, H. P. Zhu, and J. B. Hopkins, J. Chem. Phys. 95, 2445 (1991).
http://dx.doi.org/10.1063/1.460949
117.
117. N. A. Abul-Haj and D. F. Kelley, J. Chem. Phys. 84, 1335 (1986).
http://dx.doi.org/10.1063/1.450843
118.
118. T. J. Chuang, G. W. Hoffman, and K. B. Eisenthal, Chem. Phys. Lett. 25, 201 (1974).
http://dx.doi.org/10.1016/0009-2614(74)89117-7
119.
119. E. Rabinowitch and W. C. Wood, Trans. Faraday Soc. 32, 1381 (1936).
http://dx.doi.org/10.1039/tf9363201381
120.
120. E. Rabinowitch and W. C. Wood, Trans. Faraday Soc. 32, 547 (1936).
http://dx.doi.org/10.1039/tf9363200547
121.
121. J. Franck and E. Rabinowitsch, Trans. Faraday Soc. 30, 120 (1934).
http://dx.doi.org/10.1039/tf9343000120
122.
122. A. Nitzan, Chemical Dynamics in Condensed Phases (Oxford University Press, 2006).
123.
123. J. P. Bergsma, M. H. Coladonato, P. M. Edelsten, J. D. Kahn, and K. R. Wilson, J. Chem. Phys. 84, 6151 (1986).
http://dx.doi.org/10.1063/1.450756
124.
124. R. S. Mulliken, J. Chem. Phys. 55, 288 (1971).
http://dx.doi.org/10.1063/1.1675521
125.
125. D. F. Kelley, N. A. Abul-Haj, and D. J. Jang, J. Chem. Phys. 80, 4105 (1984).
http://dx.doi.org/10.1063/1.447291
126.
126. D. M. Jonas, S. E. Bradforth, S. A. Passino, and G. R. Fleming, J. Phys. Chem. 99, 2594 (1995).
http://dx.doi.org/10.1021/j100009a018
127.
127. A. L. Harris, J. K. Brown, and C. B. Harris, Annu. Rev. Phys. Chem. 39, 341 (1988).
http://dx.doi.org/10.1146/annurev.pc.39.100188.002013
128.
128. A. L. Harris, M. Berg, and C. B. Harris, J. Chem. Phys. 84, 788 (1986).
http://dx.doi.org/10.1063/1.450578
129.
129. V. A. Apkarian and N. Schwentner, Chem. Rev. 99, 1481 (1999).
http://dx.doi.org/10.1021/cr9404609
130.
130. J. Helbing and M. Chergui, J. Chem. Phys. 115, 6158 (2001).
http://dx.doi.org/10.1063/1.1401808
131.
131. Y. R. Shen, The Principles of Nonlinear Optics (John Wiley & Sons, New York, 2002).
132.
132.See Supplementary Material at http://dx.doi.org/10.1063/1.4865234 for supplementary methods and supplementary figure. [Supplementary Material]
133.
133. S. Bratos, F. Mirloup, R. Vuilleumier, and M. Wulff, J. Chem. Phys. 116, 10615 (2002).
http://dx.doi.org/10.1063/1.1477923
134.
134. N. E. Henriksen and K. B. Moller, J. Phys. Chem. B 112, 558 (2008).
http://dx.doi.org/10.1021/jp075497e
135.
135. P. A. Janson, Deconvolution with Applications in Spectroscopy (Academic Press, New York, 1984).
136.
136. W. Wallace, L. H. Schaefer, and J. R. Swedlow, Bio Techniques 31, 1076 (2001).
137.
137. J. E. Diaz-Zamboni, E. Valentín-Paravani, J. F. Adur, and V. H. Casco, Acta Microsc. 16, 8 (2007).
138.
138. K. Refson, Comput. Phys. Commun. 126, 310 (2000).
http://dx.doi.org/10.1016/S0010-4655(99)00496-8
139.
139. J. Kim, K. H. Kim, J. H. Lee, and H. Ihee, Acta Crystallogr. A 66, 270 (2010).
http://dx.doi.org/10.1107/S0108767309052052
140.
140. M. Wulff, S. Bratos, A. Plech, R. Vuilleumier, F. Mirloup, M. Lorenc, Q. Kong, and H. Ihee, J. Chem. Phys. 124, 034501 (2006).
http://dx.doi.org/10.1063/1.2149852
http://aip.metastore.ingenta.com/content/aip/journal/sdy/1/1/10.1063/1.4865234
Loading
/content/aip/journal/sdy/1/1/10.1063/1.4865234
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/sdy/1/1/10.1063/1.4865234
2014-02-11
2014-09-21

Abstract

Time-resolved X-ray solution scattering is sensitive to global molecular structure and can track the dynamics of chemical reactions. In this article, we review our recent studies on triiodide ion (I ) and molecular iodine (I) in solution. For I , we elucidated the excitation wavelength-dependent photochemistry and the solvent-dependent ground-state structure. For I, by combining time-slicing scheme and deconvolution data analysis, we mapped out the progression of geminate recombination and the associated structural change in the solvent cage. With the aid of X-ray free electron lasers, even clearer observation of ultrafast chemical events will be made possible in the near future.

Loading

Full text loading...

/deliver/fulltext/aip/journal/sdy/1/1/1.4865234.html;jsessionid=l8h1bjos09ko.x-aip-live-02?itemId=/content/aip/journal/sdy/1/1/10.1063/1.4865234&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/sdy
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Topical Review: Molecular reaction and solvation visualized by time-resolved X-ray solution scattering: Structure, dynamics, and their solvent dependence
http://aip.metastore.ingenta.com/content/aip/journal/sdy/1/1/10.1063/1.4865234
10.1063/1.4865234
SEARCH_EXPAND_ITEM