1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Communication: The electronic structure of matter probed with a single femtosecond hard x-ray pulse
Rent:
Rent this article for
Access full text Article
/content/aip/journal/sdy/1/2/10.1063/1.4868260
1.
1. B. W. J. McNeil and N. R. Thompson, Nat. Photonics 4, 814 (2010).
http://dx.doi.org/10.1038/nphoton.2010.239
2.
2. J. D. Brock, Science 315, 609 (2007).
http://dx.doi.org/10.1126/science.1136895
3.
3. K. J. Gaffney and H. N. Chapman, Science 316, 1444 (2007).
http://dx.doi.org/10.1126/science.1135923
4.
4. H. N. Chapman, P. Fromme, A. Barty, T. A. White, R. A. Kirian, A. Aquila, M. S. Hunter, J. Schulz, D. P. Deponte, U. Weierstall, R. B. Doak, F. R. N. C. Maia, A. V. Martin, I. Schlichting, L. Lomb, N. Coppola, R. L. Shoeman, S. W. Epp, R. Hartmann, D. Rolles, A. Rudenko, L. Foucar, N. Kimmel, G. Weidenspointner, P. Holl, M. Liang, M. Barthelmess, C. Caleman, S. Boutet, M. J. Bogan, J. Krzywinski, C. Bostedt, S. Bajt, L. Gumprecht, B. Rudek, B. Erk, C. Schmidt, A. Hömke, C. Reich, D. Pietschner, L. Strüder, G. Hauser, H. Gorke, J. Ullrich, S. Herrmann, G. Schaller, F. Schopper, H. Soltau, K.-U. Kühnel, M. Messerschmidt, J. D. Bozek, S. P. Hau-Riege, M. Frank, C. Y. Hampton, R. G. Sierra, D. Starodub, G. J. Williams, J. Hajdu, N. Timneanu, M. M. Seibert, J. Andreasson, A. Rocker, O. Jönsson, M. Svenda, S. Stern, K. Nass, R. Andritschke, C.-D. Schröter, F. Krasniqi, M. Bott, K. E. Schmidt, X. Wang, I. Grotjohann, J. M. Holton, T. R. M. Barends, R. Neutze, S. Marchesini, R. Fromme, S. Schorb, D. Rupp, M. Adolph, T. Gorkhover, I. Andersson, H. Hirsemann, G. Potdevin, H. Graafsma, B. Nilsson, and J. C. H. Spence, Nature 470, 73 (2011).
http://dx.doi.org/10.1038/nature09750
5.
5. R. Bonifacio, L. De Salvo, P. Pierini, N. Piovella, and C. Pellegrini, Phys. Rev. Lett. 73, 70 (1994).
http://dx.doi.org/10.1103/PhysRevLett.73.70
6.
6. H. T. Lemke, C. Bressler, L. X. Chen, D. M. Fritz, K. J. Gaffney, A. Galler, W. Gawelda, K. Haldrup, R. W. Hartsock, H. Ihee, J. Kim, K. H. Kim, J. H. Lee, M. M. Nielsen, A. B. Stickrath, W. Zhang, D. Zhu, and M. Cammarata, J. Phys. Chem. A 117, 735 (2013).
http://dx.doi.org/10.1021/jp312559h
7.
7. G. Vankó, T. Neisius, G. Molnar, F. Renz, S. Karpati, A. Shukla, and F. M. F. de Groot, J. Phys. Chem. B 110, 11647 (2006).
http://dx.doi.org/10.1021/jp0615961
8.
8. P. Glatzel and U. Bergmann, Coord. Chem. Rev 249, 65 (2005).
http://dx.doi.org/10.1016/j.ccr.2004.04.011
9.
9. U. Bergmann and P. Glatzel, Photosynth. Res. 102, 255 (2009).
http://dx.doi.org/10.1007/s11120-009-9483-6
10.
10. J. Kern, R. Alonso-Mori, R. Tran, J. Hattne, R. J. Gildea, N. Echols, C. Glockner, J. Hellmich, H. Laksmono, R. G. Sierra, B. Lassalle-Kaiser, S. Koroidov, A. Lampe, G. Han, S. Gul, D. DiFiore, D. Milathianaki, A. R. Fry, A. Miahnahri, D. W. Schafer, M. Messerschmidt, M. M. Seibert, J. E. Koglin, D. Sokaras, T. C. Weng, J. Sellberg, M. J. Latimer, R. W. Grosse-Kunstleve, P. H. Zwart, W. E. White, P. Glatzel, P. D. Adams, M. J. Bogan, G. J. Williams, S. Boutet, J. Messinger, A. Zouni, N. K. Sauter, V. K. Yachandra, U. Bergmann, and J. Yano, Science 340, 491 (2013).
http://dx.doi.org/10.1126/science.1234273
11.
11. R. Alonso-Mori, J. Kern, R. J. Gildea, D. Sokaras, T. C. Weng, B. Lassalle-Kaiser, R. Tran, J. Hattne, H. Laksmono, J. Hellmich, C. Glockner, N. Echols, R. G. Sierra, D. W. Schafer, J. Sellberg, C. Kenney, R. Herbst, J. Pines, P. Hart, S. Herrmann, R. W. Grosse-Kunstleve, M. J. Latimer, A. R. Fry, M. M. Messerschmidt, A. Miahnahri, M. M. Seibert, P. H. Zwart, W. E. White, P. D. Adams, M. J. Bogan, S. Boutet, G. J. Williams, A. Zouni, J. Messinger, P. Glatzel, N. K. Sauter, V. K. Yachandra, J. Yano, and U. Bergmann, Proc. Natl. Acad. Sci. U.S.A. 109, 1910319107 (2012).
http://dx.doi.org/10.1073/pnas.1211384109
12.
12. L. Young, E. P. Kanter, B. Krässig, Y. Li, A. M. March, S. T. Pratt, R. Santra, S. H. Southworth, N. Rohringer, L. F. Dimauro, G. Doumy, C. A. Roedig, N. Berrah, L. Fang, M. Hoener, P. H. Bucksbaum, J. P. Cryan, S. Ghimire, J. M. Glownia, D. A. Reis, J. D. Bozek, C. Bostedt, and M. Messerschmidt, Nature 466, 56 (2010).
http://dx.doi.org/10.1038/nature09177
13.
13. G. Doumy, C. Roedig, S. K. Son, C. I. Blaga, A. D. DiChiara, R. Santra, N. Berrah, C. Bostedt, J. D. Bozek, P. H. Bucksbaum, J. P. Cryan, L. Fang, S. Ghimire, J. M. Glownia, M. Hoener, E. P. Kanter, B. Krässig, M. Kuebel, M. Messerschmidt, G. G. Paulus, D. A. Reis, N. Rohringer, L. Young, P. Agostini, and L. F. Dimauro, Phys. Rev. Lett. 106, 083002 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.083002
14.
14. J. Hoszowska, J. C. Dousse, J. Szlachetko, Y. Kayser, W. Cao, P. Jagodzinski, M. Kavčič, and S. H. Nowak, Phys. Rev. Lett. 107, 053001 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.053001
15.
15. S. Pascarelli, O. Mathon, M. Munoz, T. Mairs, and J. Susini, J. Synchrotron Radiat. 13, 351 (2006).
http://dx.doi.org/10.1107/S0909049506026938
16.
16. M. Yabashi, J. B. Hastings, M. S. Zolotorev, H. Mimura, H. Yumoto, S. Matsuyama, K. Yamauchi, and T. Ishikawa, Phys. Rev. Lett. 97, 084802 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.084802
17.
17. D. Zhu, M. Cammarata, J. M. Feldkamp, D. M. Fritz, J. B. Hastings, S. Lee, H. T. Lemke, A. Robert, J. L. Turner, and Y. Feng, Appl. Phys. Lett. 101, 034103 (2012).
http://dx.doi.org/10.1063/1.4736725
18.
18. J. Amann, W. Berg, V. Blank, F. J. Decker, Y. Ding, P. Emma, Y. Feng, J. Frisch, D. Fritz, J. Hastings, Z. Huang, J. Krzywinski, R. Lindberg, H. Loos, A. Lutman, H. D. Nuhn, D. Ratner, J. Rzepiela, D. Shu, Y. Shvyd'Ko, S. Spampinati, S. Stoupin, S. Terentyev, E. Trakhtenberg, D. Walz, J. Welch, J. Wu, A. Zholents, and D. Zhu, Nat. Photonics 6, 693 (2012).
http://dx.doi.org/10.1038/nphoton.2012.180
19.
19. P. Emma, R. Akre, J. Arthur, R. Bionta, C. Bostedt, J. Bozek, A. Brachmann, P. Bucksbaum, R. Coffee, F. J. Decker, Y. Ding, D. Dowell, S. Edstrom, A. Fisher, J. Frisch, S. Gilevich, J. Hastings, G. Hays, P. Hering, Z. Huang, R. Iverson, H. Loos, M. Messerschmidt, A. Miahnahri, S. Moeller, H. D. Nuhn, G. Pile, D. Ratner, J. Rzepiela, D. Schultz, T. Smith, P. Stefan, H. Tompkins, J. Turner, J. Welch, W. White, J. Wu, G. Yocky, and J. Galayda, Nat. Photonics 4, 641 (2010).
http://dx.doi.org/10.1038/nphoton.2010.176
20.
20. T. Ishikawa, H. Aoyagi, T. Asaka, Y. Asano, N. Azumi, T. Bizen, H. Ego, K. Fukami, T. Fukui, Y. Furukawa, S. Goto, H. Hanaki, T. Hara, T. Hasegawa, T. Hatsui, A. Higashiya, T. Hirono, N. Hosoda, M. Ishii, T. Inagaki, Y. Inubushi, T. Itoga, Y. Joti, M. Kago, T. Kameshima, H. Kimura, Y. Kirihara, A. Kiyomichi, T. Kobayashi, C. Kondo, T. Kudo, H. Maesaka, X. M. Maréchal, T. Masuda, S. Matsubara, T. Matsumoto, T. Matsushita, S. Matsui, M. Nagasono, N. Nariyama, H. Ohashi, T. Ohata, T. Ohshima, S. Ono, Y. Otake, C. Saji, T. Sakurai, T. Sato, K. Sawada, T. Seike, K. Shirasawa, T. Sugimoto, S. Suzuki, S. Takahashi, H. Takebe, K. Takeshita, K. Tamasaku, H. Tanaka, R. Tanaka, T. Tanaka, T. Togashi, K. Togawa, A. Tokuhisa, H. Tomizawa, K. Tono, S. WU, M. Yabashi, M. Yamaga, A. Yamashita, K. Yanagida, C. Zhang, T. Shintake, H. Kitamura, and N. Kumagai, Nat. Photonics 6, 540 (2012).
http://dx.doi.org/10.1038/nphoton.2012.141
21.
21. T. Katayama, Y. Inubushi, Y. Obara, T. Sato, T. Togashi, K. Tono, T. Hatsui, T. Kameshima, A. Bhattacharya, Y. Ogi, N. Kurahashi, K. Misawa, T. Suzuki, and M. Yabashi, Appl. Phys. Lett. 103, 131105 (2013).
http://dx.doi.org/10.1063/1.4821108
22.
22. J. Szlachetko, M. Nachtegaal, J. Sa, J.-C. Dousse, J. Hoszowska, E. Kleymenov, M. Janousch, O. V. Safonova, C. König, and J. A. van Bokhoven, Chem. Commun. 48, 10898 (2012).
http://dx.doi.org/10.1039/c2cc35086f
23.
23. M. Kavčič, M. Žitnik, K. Bučar, A. Mihelič, B. Marolt, J. Szlachetko, P. Glatzel, and K. Kvashnina, Phys. Rev. B 87, 075106 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.075106
24.
24. H. A. Kramers and W. Heisenberg, Z. Fur Phys. 31, 681 (1925).
http://dx.doi.org/10.1007/BF02980624
25.
25. J. Tulkki and T. Åberg, J. Phys. B: At. Mol. Opt. Phys. 15, L435 (1982).
http://dx.doi.org/10.1088/0022-3700/15/13/004
26.
26. J. Tulkki, Phys. Rev. A 27, 3375 (1983).
http://dx.doi.org/10.1103/PhysRevA.27.3375
27.
27. J. A. Carlisle, E. L. Shirley, E. A. Hudson, L. J. Terminello, T. A. Callcott, J. J. Jia, D. L. Ederer, R. C. C. Perera, and F. J. Himpsel, Phys. Rev. Lett. 74, 1234 (1995).
http://dx.doi.org/10.1103/PhysRevLett.74.1234
28.
28. H. Hayashi, Y. Udagawa, W. A. Caliebe, and C. C. Kao, Chem. Phys. Lett. 371, 125 (2003).
http://dx.doi.org/10.1016/S0009-2614(03)00220-3
29.
29. J. Szlachetko, J. C. Dousse, J. Hoszowska, M. Pajek, R. Barrett, M. Berset, K. Fennane, A. Kubala-Kukus, and M. Szlachetko, Phys. Rev. Lett. 97, 073001 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.073001
30.
30. S. Boutet and G. J. Williams, New J. Phys. 12, 035024 (2010).
http://dx.doi.org/10.1088/1367-2630/12/3/035024
31.
31. G. Geloni, V. Kocharyan, and E. Saldin, J. Mod. Opt. 58, 1391 (2011).
http://dx.doi.org/10.1080/09500340.2011.586473
32.
32. J. Szlachetko, M. Nachtegaal, E. de Boni, M. Willimann, O. Safonova, J. Sa, G. Smolentsev, M. Szlachetko, J. A. van Bokhoven, J. C. Dousse, J. Hoszowska, Y. Kayser, P. Jagodzinski, A. Bergamaschi, B. Schmitt, C. David, and A. Lücke, Rev. Sci. Instrum 83, 103105 (2012).
http://dx.doi.org/10.1063/1.4756691
33.
33. S. Herrmann, S. Boutet, B. Duda, D. Fritz, G. Haller, P. Hart, R. Herbst, C. Kenney, H. Lemke, M. Messerschmidt, J. Pines, A. Robert, M. Sikorski, and G. Williams, Nucl. Inst. Methods Phys. Res. A 718, 550553 (2013).
http://dx.doi.org/10.1016/j.nima.2013.01.057
34.
34. R. D. Deslattes, E. G. Kassler, Jr., P. Indelicato, L. De Billy, E. Lindroth, and J. Anton, Rev. Mod. Phys. 75, 35 (2003).
http://dx.doi.org/10.1103/RevModPhys.75.35
35.
35. J. L. Campbell and T. Papp, At. Data Nucl. Data Tables 77, 1 (2001).
http://dx.doi.org/10.1006/adnd.2000.0848
36.
36. G. N. Greaves, P. J. Durham, G. Diakun, and P. Quinn, Nature 294, 139 (1981).
http://dx.doi.org/10.1038/294139a0
37.
37. S. Bocharov, T. Kirchner, G. Dräger, O. Šipr, and A. Šimůnek, Phys. Rev. B 63, 045104 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.045104
38.
38. M. Calandra, J. P. Rueff, C. Gougoussis, D. Céolin, M. Gorgoi, S. Benedetti, P. Torelli, A. Shukla, D. Chandesris, and C. Brouder, Phys. Rev. B 86, 165102 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.165102
39.
39. L. A. Grunes, Phys. Rev. B 27, 2111 (1983).
http://dx.doi.org/10.1103/PhysRevB.27.2111
40.
40. J. Kawai, Y. Nihei, M. Fujinami, Y. Higashi, S. Fukushima, and Y. Gohshi, Solid State Commun. 70, 567 (1989).
http://dx.doi.org/10.1016/0038-1098(89)90951-4
41.
41. R. Alonso-Mori, J. Kern, D. Sokaras, T.-C. Weng, D. Nordlund, R. Tran, P. Montanez, J. Delor, V. K. Yachandra, J. Yano, and U. Bergmann, Rev. Sci. Instrum. 83, 073114 (2012).
http://dx.doi.org/10.1063/1.4737630
42.
42. V. Bushuev, L. Samoylova, H. Sinn, and T. Tschentscher, Proc. SPIE 8141, 81410T (2011).
43.
43. S. D. Shastri, P. Zambianchi, and D. M. Mills, J. Synchrotron Radiat. 8, 1131 (2001).
http://dx.doi.org/10.1107/S0909049501012390
http://aip.metastore.ingenta.com/content/aip/journal/sdy/1/2/10.1063/1.4868260
Loading
/content/aip/journal/sdy/1/2/10.1063/1.4868260
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/sdy/1/2/10.1063/1.4868260
2014-03-17
2014-10-21

Abstract

Physical, biological, and chemical transformations are initiated by changes in the electronic configuration of the species involved. These electronic changes occur on the timescales of attoseconds (10−18 s) to femtoseconds (10−15 s) and drive all subsequent electronic reorganization as the system moves to a new equilibrium or quasi-equilibrium state. The ability to detect the dynamics of these electronic changes is crucial for understanding the potential energy surfaces upon which chemical and biological reactions take place. Here, we report on the determination of the electronic structure of matter using a single self-seeded femtosecond x-ray pulse from the Linac Coherent Light Source hard x-ray free electron laser. By measuring the high energy resolution off-resonant spectrum (HEROS), we were able to obtain information about the electronic density of states with a single femtosecond x-ray pulse. We show that the unoccupied electronic states of the scattering atom may be determined on a shot-to-shot basis and that the measured spectral shape is independent of the large intensity fluctuations of the incoming x-ray beam. Moreover, we demonstrate the chemical sensitivity and single-shot capability and limitations of HEROS, which enables the technique to track the electronic structural dynamics in matter on femtosecond time scales, making it an ideal probe technique for time-resolved X-ray experiments.

Loading

Full text loading...

/deliver/fulltext/aip/journal/sdy/1/2/1.4868260.html;jsessionid=9ohh6aa97s35a.x-aip-live-02?itemId=/content/aip/journal/sdy/1/2/10.1063/1.4868260&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/sdy
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: The electronic structure of matter probed with a single femtosecond hard x-ray pulse
http://aip.metastore.ingenta.com/content/aip/journal/sdy/1/2/10.1063/1.4868260
10.1063/1.4868260
SEARCH_EXPAND_ITEM