1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Ultrafast electron diffraction using an ultracold source
Rent:
Rent this article for
Access full text Article
/content/aip/journal/sdy/1/3/10.1063/1.4882074
1.
1. P. Emma, R. Akre, J. Arthur, R. Bionta, J. Bostedt, C. Bostedt, A. Brachmann, P. Bucksbaum, R. Coffee, F.-J. Decker, Y. Ding, D. Dowell, S. Edstrom, A. Fisher, J. Frisch, S. Gilevich, J. Hastings, G. Hays, P. Hering, Z. Huang, R. Iverson, H. Loos, M. Messerschmidt, A. Miahnahri, S. Moeller, H.-D. Nuhn, G. Pile, D. Ratner, J. Rzepiela, D. Schultz, T. Smith, P. Stefan, H. Tompkins, J. Turner, J. Welch, W. White, J. Wu, G. Yocky, and J. Galayda, “ First lasing and operation of an angstrom-wavelength free-electron laser,” Nat. Photonics 4, 641647 (2010).
http://dx.doi.org/10.1038/nphoton.2010.176
2.
2. H. N. Chapman, P. Fromme, A. Barty, T. A. White, R. A. Kirian, A. Aquila, M. S. Hunter, J. Schulz, D. P. DePonte, U. Weierstall, R. B. Doak, F. R. N. C. Maia, A. V. Martin, I. Schlichting, L. Lomb, N. Coppola, R. L. Shoeman, S. W. Epp, R. Hartmann, D. Rolles, A. Rudenko, L. Foucar, N. Kimmel, G. Weidenspointner, P. Holl, M. Liang, M. Barthelmess, C. Caleman, S. Boutet, M. J. Bogan, J. Krzywinski, C. Bostedt, S. Bajt, L. Gumprecht, B. Rudek, B. Erk, C. Schmidt, A. Homke, C. Reich, D. Pietschner, L. Struder, G. Hauser, H. Gorke, J. Ullrich, S. Herrmann, G. Schaller, F. Schopper, H. Soltau, K.-U. Kuhnel, M. Messerschmidt, J. D. Bozek, S. P. Hau-Riege, M. Frank, C. Y. Hampton, R. G. Sierra, D. Starodub, G. J. Williams, J. Hajdu, N. Timneanu, M. M. Seibert, J. Andreasson, A. Rocker, O. Jonsson, M. Svenda, S. Stern, K. Nass, R. Andritschke, C.-D. Schroter, F. Krasniqi, M. Bott, K. E. Schmidt, X. Wang, I. Grotjohann, J. M. Holton, T. R. M. Barends, R. Neutze, S. Marchesini, R. Fromme, S. Schorb, D. Rupp, M. Adolph, T. Gorkhover, I. Andersson, H. Hirsemann, G. Potdevin, H. Graafsma, B. Nilsson, and J. C. H. Spence, “ Femtosecond X-ray protein nanocrystallography,” Nature 470, 7377 (2011).
http://dx.doi.org/10.1038/nature09750
3.
3. S. Boutet, L. Lomb, G. J. Williams, T. R. M. Barends, A. Aquila, R. B. Doak, U. Weierstall, D. P. DePonte, J. Steinbrener, R. L. Shoeman, M. Messerschmidt, A. Barty, T. A. White, S. Kassemeyer, R. A. Kirian, M. M. Seibert, P. A. Montanez, C. Kenney, R. Herbst, P. Hart, J. Pines, G. Haller, S. M. Gruner, H. T. Philipp, M. W. Tate, M. Hromalik, L. J. Koerner, N. van Bakel, J. Morse, W. Ghonsalves, D. Arnlund, M. J. Bogan, C. Caleman, R. Fromme, C. Y. Hampton, M. S. Hunter, L. C. Johansson, G. Katona, C. Kupitz, M. Liang, A. V. Martin, K. Nass, L. Redecke, F. Stellato, N. Timneanu, D. Wang, N. A. Zatsepin, D. Schafer, J. Defever, R. Neutze, P. Fromme, J. C. H. Spence, H. N. Chapman, and I. Schlichting, “ High-resolution protein structure determination by serial femtosecond crystallography,” Science 337, 362364 (2012).
http://dx.doi.org/10.1126/science.1217737
4.
4. G. Sciaini and R. J. D. Miller, “ Femtosecond electron diffraction: heralding the era of atomically resolved dynamics,” Rep. Prog. Phys. 74, 096101 (2011).
http://dx.doi.org/10.1088/0034-4885/74/9/096101
5.
5. M. Chergui and A. H. Zewail, “ Electron and X-ray methods of ultrafast structural dynamics: Advances and applications,” ChemPhysChem 10, 2843 (2009).
http://dx.doi.org/10.1002/cphc.200800667
6.
6. M. Gao, C. Lu, H. Jean-Ruel, L. C. Liu, A. Marx, K. Onda, S.-y. Koshihara, Y. Nakano, X. Shao, T. Hiramatsu, G. Saito, H. Yamochi, R. R. Cooney, G. Moriena, G. Sciaini, and R. J. D. Miller, “ Mapping molecular motions leading to charge delocalization with ultrabright electrons,” Nature 496, 343346 (2013).
http://dx.doi.org/10.1038/nature12044
7.
7. B. J. Claessens, S. B. van der Geer, G. Taban, E. J. D. Vredenbregt, and O. J. Luiten, “ Ultracold electron source,” Phys. Rev. Lett. 95, 164801 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.164801
8.
8. G. Taban, M. P. Reijnders, B. Fleskens, S. B. van der Geer, O. J. Luiten, and E. J. D. Vredenbregt, “ Ultracold electron source for single-shot diffraction studies,” Europhys. Lett. 91, 46004 (2010).
http://dx.doi.org/10.1209/0295-5075/91/46004
9.
9. A. J. McCulloch, D. V. Sheludko, S. D. Saliba, S. C. Bell, M. Junker, K. A. Nugent, and R. E. Scholten, “ Arbitrarily shaped high-coherence electron bunches from cold atoms,” Nat. Phys. 7, 785789 (2011).
http://dx.doi.org/10.1038/nphys2052
10.
10. W. J. Engelen, M. A. van der Heijden, D. J. Bakker, E. J. D. Vredenbregt, and O. J. Luiten, “ High-coherence electron bunches produced by femtosecond photoionization,” Nat. Commun. 4, 1693 (2013).
http://dx.doi.org/10.1038/ncomms2700
11.
11. A. J. McCulloch, D. V. Sheludko, M. Junker, and R. E. Scholten, “ High-coherence picosecond electron bunches from cold atoms,” Nat. Commun. 4, 1692 (2013).
http://dx.doi.org/10.1038/ncomms2699
12.
12. M. Aidelsburger, F. O. Kirchner, F. Krausz, and P. Baum, “ Single-electron pulses for ultrafast diffraction,” Proc. Natl. Acad. Sci. U.S.A. 107, 1971419719 (2010).
http://dx.doi.org/10.1073/pnas.1010165107
13.
13. C. P. Hauri, R. Ganter, F. Le Pimpec, A. Trisorio, C. Ruchert, and H. H. Braun, “ Intrinsic emittance reduction of an electron beam from metal photocathodes,” Phys. Rev. Lett. 104, 234802 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.234802
14.
14. F. O. Kirchner, S. Lahme, F. Krausz, and P. Baum, “ Coherence of femtosecond single electrons exceeds biomolecular dimensions,” New J. Phys. 15, 063021 (2013).
http://dx.doi.org/10.1088/1367-2630/15/6/063021
15.
15. J. Hoffrogge, J. Paul Stein, M. Krüger, M. Förster, J. Hammer, D. Ehberger, P. Baum, and P. Hommelhoff, “ Tip-based source of femtosecond electron pulses at 30 keV,” J. Appl. Phys. 115, 094506 (2014).
http://dx.doi.org/10.1063/1.4867185
16.
16. G. Taban, M. P. Reijnders, S. C. Bell, S. B. van der Geer, O. J. Luiten, and E. J. D. Vredenbregt, “ Design and validation of an accelerator for an ultracold electron source,” Phys. Rev. Spec. Top. -Accel. Beams 11, 050102 (2008).
http://dx.doi.org/10.1103/PhysRevSTAB.11.050102
17.
17. W. Engelen, E. Smakman, D. Bakker, O. Luiten, and E. Vredenbregt, “ Effective temperature of an ultracold electron source based on near-threshold photoionization,” Ultramicroscopy 136, 7380 (2014).
http://dx.doi.org/10.1016/j.ultramic.2013.07.017
18.
18.Sample produced by mechanical exfoliation of Naturally Graphite sample, see http://graphitecrystals.com.
19.
19. S. B. Van der Geer and M. J. De Loos, “ General Particle Tracer” (2011), see www.pulsar.nl/gpt.
20.
20. S. B. van der Geer, M. J. de Loos, E. J. D. Vredenbregt, and O. J. Luiten, “ Ultracold electron source for single-shot, ultrafast electron diffraction,” Microsc. Microanal. 15, 282289 (2009).
http://dx.doi.org/10.1017/S143192760909076X
21.
21. B. Carlsten, “ New photoelectric injector design for the Los Alamos National Laboratory XUV FEL accelerator,” Nucl. Instrum. Methods Phys. Res., Sect. A 285, 313319 (1989).
http://dx.doi.org/10.1016/0168-9002(89)90472-5
22.
22. L. Serafini and J. B. Rosenzweig, “ Envelope analysis of intense relativistic quasilaminar beams in rf photoinjectors: A theory of emittance compensation,” Phys. Rev. E 55, 75657590 (1997).
http://dx.doi.org/10.1103/PhysRevE.55.7565
http://aip.metastore.ingenta.com/content/aip/journal/sdy/1/3/10.1063/1.4882074
Loading
/content/aip/journal/sdy/1/3/10.1063/1.4882074
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/sdy/1/3/10.1063/1.4882074
2014-06-06
2014-08-27

Abstract

The study of structural dynamics of complex macromolecular crystals using electrons requires bunches of sufficient coherence and charge. We present diffraction patterns from graphite, obtained with bunches from an ultracold electron source, based on femtosecond near-threshold photoionization of a laser-cooled atomic gas. By varying the photoionization wavelength, we change the effective source temperature from 300 K to 10 K, resulting in a concomitant change in the width of the diffraction peaks, which is consistent with independently measured source parameters. This constitutes a direct measurement of the beam coherence of this ultracold source and confirms its suitability for protein crystal diffraction.

Loading

Full text loading...

/deliver/fulltext/aip/journal/sdy/1/3/1.4882074.html;jsessionid=5amr1qhk6nm1r.x-aip-live-06?itemId=/content/aip/journal/sdy/1/3/10.1063/1.4882074&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/sdy

Most read this month

Article
content/aip/journal/sdy
Journal
5
3
Loading

Most cited this month

true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Ultrafast electron diffraction using an ultracold source
http://aip.metastore.ingenta.com/content/aip/journal/sdy/1/3/10.1063/1.4882074
10.1063/1.4882074
SEARCH_EXPAND_ITEM