1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Femtosecond single-electron diffraction
Rent:
Rent this article for
Access full text Article
/content/aip/journal/sdy/1/3/10.1063/1.4884937
1.
1. G. Mourou and S. Williamson, “Picosecond electron-diffraction,” Appl. Phys. Lett. 41(1), 4445 (1982).
http://dx.doi.org/10.1063/1.93316
2.
2. D. J. Flannigan and A. H. Zewail, “4D electron microscopy: Principles and applications,” Acc. Chem. Res. 45(10), 18281839 (2012).
http://dx.doi.org/10.1021/ar3001684
3.
3. R. J. Dwayne Miller, “Mapping atomic motions with ultrabright electrons: The chemists' Gedanken experiment enters the lab frame,” Annu. Rev. Phys. Chem. 65(1), 583604 (2014).
http://dx.doi.org/10.1146/annurev-physchem-040412-110117
4.
4. M. Gao, C. Lu, H. Jean-Ruel, L. C. Liu, A. Marx, K. Onda, S. Koshihara, Y. Nakano, X. F. Shao, T. Hiramatsu, G. Saito, H. Yamochi, R. R. Cooney, G. Moriena, G. Sciaini, and R. J. D. Miller, “Mapping molecular motions leading to charge delocalization with ultrabright electrons,” Nature 496(7445), 343346 (2013).
http://dx.doi.org/10.1038/nature12044
5.
5. B. Barwick, H. S. Park, O. H. Kwon, J. S. Baskin, and A. H. Zewail, “4D imaging of transient structures and morphologies in ultrafast electron microscopy,” Science 322(5905), 12271231 (2008).
http://dx.doi.org/10.1126/science.1164000
6.
6. H. Jean-Ruel, M. Gao, M. A. Kochman, C. Lu, L. C. Liu, R. R. Cooney, C. A. Morrison, and R. J. D. Miller, “Ring-closing reaction in diarylethene captured by femtosecond electron crystallography,” J. Phys. Chem. B 117(49), 1589415902 (2013).
http://dx.doi.org/10.1021/jp409245h
7.
7. T. R. T. Han, Z. S. Tao, S. D. Mahanti, K. Chang, C. Y. Ruan, C. D. Malliakas, and M. G. Kanatzidis, “Structural dynamics of two-dimensional charge-density waves in CeTe3 investigated by ultrafast electron crystallography,” Phys. Rev. B 86(7), 075145 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.075145
8.
8. N. Erasmus, M. Eichberger, K. Haupt, I. Boshoff, G. Kassier, R. Birmurske, H. Berger, J. Demsar, and H. Schwoerer, “Ultrafast dynamics of charge density waves in 4H(b)-TaSe2 probed by femtosecond electron diffraction,” Phys. Rev. Lett. 109(16), 167402 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.167402
9.
9. S. Wall, B. Krenzer, S. Wippermann, S. Sanna, F. Klasing, A. Hanisch-Blicharski, M. Kammler, W. G. Schmidt, and M. Horn-von Hoegen, “Atomistic picture of charge density wave formation at surfaces,” Phys. Rev. Lett. 109(18), 186101 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.186101
10.
10. M. Ligges, I. Rajkovic, P. Zhou, O. Posth, C. Hassel, G. Dumpich, and D. D. Linde, “Observation of ultrafast lattice heating using time resolved electron diffraction,” Appl. Phys. Lett. 94(10), 101910 (2009).
http://dx.doi.org/10.1063/1.3095497
11.
11. F. Carbone, P. Baum, P. Rudolf, and A. Zewail, “Structural preablation dynamics of graphite observed by ultrafast electron crystallography,” Phys. Rev. Lett. 100(3), 035501 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.035501
12.
12. S. Schäfer, W. Liang, and A. H. Zewail, “Primary structural dynamics in graphite,” New J. Phys. 13(6), 063030 (2011).
http://dx.doi.org/10.1088/1367-2630/13/6/063030
13.
13. B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, “An atomic-level view of melting using femtosecond electron diffraction,” Science 302(5649), 13821385 (2003).
http://dx.doi.org/10.1126/science.1090052
14.
14. C. Y. Ruan, Y. Murooka, R. K. Raman, R. A. Murdick, R. J. Worhatch, and A. Pell, “The development and applications of ultrafast electron nanocrystallography,” Microsc. Microanal. 15(4), 323337 (2009).
http://dx.doi.org/10.1017/S1431927609090709
15.
15. B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, “Ultrafast electron optics: Propagation dynamics of femtosecond electron packets,” J. Appl. Phys. 92(3), 16431648 (2002).
http://dx.doi.org/10.1063/1.1487437
16.
16. G. H. Kassier, N. Erasmus, K. Haupt, I. Boshoff, R. Siegmund, S. M. M. Coelho, and H. Schwoerer, “Photo-triggered pulsed cavity compressor for bright electron bunches in ultrafast electron diffraction,” Appl. Phys. B: Lasers Opt. 109(2), 249257 (2012).
http://dx.doi.org/10.1007/s00340-012-5207-2
17.
17. T. van Oudheusden, P. L. E. M. Pasmans, S. B. van der Geer, M. J. de Loos, M. J. van der Wiel, and O. J. Luiten, “Compression of subrelativistic space-charge-dominated electron bunches for single-shot femtosecond electron diffraction,” Phys. Rev. Lett. 105(26), 264801 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.264801
18.
18. M. Gao, Y. Jiang, G. H. Kassier, and R. J. D. Miller, “Single shot time stamping of ultrabright radio frequency compressed electron pulses,” Appl. Phys. Lett. 103(3), 033503 (2013).
http://dx.doi.org/10.1063/1.4813313
19.
19. G. F. Mancini, B. Mansart, S. Pagano, B. van der Geer, M. de Loos, and F. Carbone, “Design and implementation of a flexible beamline for fs electron diffraction experiments,” Nucl. Instrum. Methods Phys. Res., Sect. A 691, 113122 (2012).
http://dx.doi.org/10.1016/j.nima.2012.06.057
20.
20. M. Gao, H. Jean-Ruel, R. R. Cooney, J. Stampe, M. de Jong, M. Harb, G. Sciaini, G. Moriena, and R. J. D. Miller, “Full characterization of RF compressed femtosecond electron pulses using ponderomotive scattering,” Opt. Express 20(11), 1204812058 (2012).
http://dx.doi.org/10.1364/OE.20.012048
21.
21. R. P. Chatelain, V. R. Morrison, C. Godbout, and B. J. Siwick, “Ultrafast electron diffraction with radio-frequency compressed electron pulses,” Appl. Phys. Lett. 101(8), 081901 (2012).
http://dx.doi.org/10.1063/1.4747155
22.
22. G. J. H. Brussaard, A. Lassise, P. L. E. M. Pasmans, P. H. A. Mutsaers, M. J. van der Wiel, and O. J. Luiten, “Direct measurement of synchronization between femtosecond laser pulses and a 3 GHz radio frequency electric field inside a resonant cavity,” Appl. Phys. Lett. 103(14), 141105 (2013).
http://dx.doi.org/10.1063/1.4823590
23.
23. A. Gliserin, A. Apolonski, F. Krausz, and P. Baum, “Compression of single-electron pulses with a microwave cavity,” New J. Phys. 14, 073055 (2012).
http://dx.doi.org/10.1088/1367-2630/14/7/073055
24.
24. K. Jung and J. Kim, “Subfemtosecond synchronization of microwave oscillators with mode-locked Er-fiber lasers,” Opt. Lett. 37(14), 29582960 (2012).
http://dx.doi.org/10.1364/OL.37.002958
25.
25. T. van Oudheusden, E. F. de Jong, S. B. van der Geer, W. P. E. M. O. Root, O. J. Luiten, and B. J. Siwick, “Electron source concept for single-shot sub-100 fs electron diffraction in the 100 keV range,” J. Appl. Phys. 102(9), 093501 (2007).
http://dx.doi.org/10.1063/1.2801027
26.
26. O. J. Luiten, S. B. van der Geer, M. J. de Loos, F. B. Kiewiet, and M. J. van der Wiel, “How to realize uniform three-dimensional ellipsoidal electron bunches,” Phys. Rev. Lett. 93(9), 094802 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.094802
27.
27. E. Vredenbregt and J. Luiten, “Electron diffraction: Cool beams in great shape,” Nat. Phys. 7(10), 747748 (2011).
http://dx.doi.org/10.1038/nphys2084
28.
28. P. Musumeci, J. T. Moody, R. J. England, J. B. Rosenzweig, and T. Tran, “Experimental generation and characterization of uniformly filled ellipsoidal electron-beam distributions,” Phys. Rev. Lett. 100(24), 244801 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.244801
29.
29. V. A. Lobastov, R. Srinivasan, and A. H. Zewail, “Four-dimensional ultrafast electron microscopy,” Proc. Natl. Acad. Sci. U. S. A. 102(20), 70697073 (2005).
http://dx.doi.org/10.1073/pnas.0502607102
30.
30. P. Hansen, C. Baumgarten, H. Batelaan, and M. Centurion, “Dispersion compensation for attosecond electron pulses,” Appl. Phys. Lett. 101(8), 083501 (2012).
http://dx.doi.org/10.1063/1.4746271
31.
31. L. Veisz, G. Kurkin, K. Chernov, V. Tarnetsky, A. Apolonski, F. Krausz, and E. Fill, “Hybrid dc-ac electron gun for fs-electron pulse generation,” New J. Phys. 9, 451 (2007).
http://dx.doi.org/10.1088/1367-2630/9/12/451
32.
32. I. Katayama, K. Sato, S. Koga, J. Takeda, S. Hishita, H. Fukidome, M. Suemitsu, and M. Kitajima, “Coherent nanoscale optical-phonon wave packet in graphene layers,” Phys. Rev. B 88(24), 245406 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.245406
33.
33. Y. W. Li, V. A. Stoica, L. Endicott, G. Y. Wang, C. Uher, and R. Clarke, “Coherent optical phonon spectroscopy studies of femtosecond-laser modified Sb2Te3 films,” Appl. Phys. Lett. 97(17), 171908 (2010).
http://dx.doi.org/10.1063/1.3499742
34.
34. M. Hase, M. Katsuragawa, A. M. Constantinescu, and H. Petek, “Coherent phonon-induced optical modulation in semiconductors at terahertz frequencies,” New J. Phys. 15, 055018 (2013).
http://dx.doi.org/10.1088/1367-2630/15/5/055018
35.
35. M. Barbatti, A. J. A. Aquino, H. Lischka, C. Schriever, S. Lochbrunner, and E. Riedle, “Ultrafast internal conversion pathway and mechanism in 2-(2′-hydroxyphenyl) benzothiazole: A case study for excited-state intramolecular proton transfer systems,” Phys. Chem. Chem. Phys. 11(9), 14061415 (2009).
http://dx.doi.org/10.1039/b814255f
36.
36. F. Schmitt, P. S. Kirchmann, U. Bovensiepen, R. G. Moore, J. H. Chu, D. H. Lu, L. Rettig, M. Wolf, I. R. Fisher, and Z. X. Shen, “Ultrafast electron dynamics in the charge density wave material TbTe3,” New J. Phys. 13, 063022 (2011).
http://dx.doi.org/10.1088/1367-2630/13/6/063022
37.
37. K. Kimura, H. Matsuzaki, S. Takaishi, M. Yamashita, and H. Okamoto, “Ultrafast photoinduced transitions in charge density wave, Mott insulator, and metallic phases of an iodine-bridged platinum compound,” Phys. Rev. B 79(7), 075116 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.075116
38.
38. A. T. Yeh, C. V. Shank, and J. K. McCusker, “Ultrafast electron localization dynamics following photo-induced charge transfer,” Science 289(5481), 935938 (2000).
http://dx.doi.org/10.1126/science.289.5481.935
39.
39. P. Baum and A. H. Zewail, “4D attosecond imaging with free electrons: Diffraction methods and potential applications,” Chem. Phys. 366(1–3), 28 (2009).
http://dx.doi.org/10.1016/j.chemphys.2009.07.013
40.
40. B. Barwick, D. J. Flannigan, and A. H. Zewail, “Photon-induced near-field electron microscopy,” Nature 462(7275), 902906 (2009).
http://dx.doi.org/10.1038/nature08662
41.
41. C. Y. Ruan, F. Vigliotti, V. A. Lobastov, S. Y. Chen, and A. H. Zewail, “Ultrafast electron crystallography: Transient structures of molecules, surfaces, and phase transitions,” Proc. Natl. Acad. Sci. U. S. A. 101(5), 11231128 (2004).
http://dx.doi.org/10.1073/pnas.0307302101
42.
42. A. H. Zewail, “4D ultrafast electron diffraction, crystallography, and microscopy,” Annu. Rev. Phys. Chem. 57, 65103 (2006).
http://dx.doi.org/10.1146/annurev.physchem.57.032905.104748
43.
43. E. Fill, L. Veisz, A. Apolonski, and F. Krausz, “Sub-fs electron pulses for ultrafast electron diffraction,” New J. Phys. 8, 272 (2006).
http://dx.doi.org/10.1088/1367-2630/8/11/272
44.
44. F. O. Kirchner, S. Lahme, F. Krausz, and P. Baum, “Coherence of femtosecond single electrons exceeds biomolecular dimensions,” New J. Phys. 15, 063021 (2013).
http://dx.doi.org/10.1088/1367-2630/15/6/063021
45.
45. F. O. Kirchner, A. Gliserin, F. Krausz, and P. Baum, “Laser streaking of free electrons at 25 keV,” Nat. Photonics 8(1), 5257 (2014).
http://dx.doi.org/10.1038/nphoton.2013.315
46.
46. N. Bonini, M. Lazzeri, N. Marzari, and F. Mauri, “Phonon anharmonicities in graphite and graphene,” Phys. Rev. Lett. 99(17), 176802 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.176802
47.
47. M. Scheuch, T. Kampfrath, M. Wolf, K. von Volkmann, C. Frischkorn, and L. Perfetti, “Temperature dependence of ultrafast phonon dynamics in graphite,” Appl. Phys. Lett. 99(21), 211908 (2011).
http://dx.doi.org/10.1063/1.3663867
48.
48. H. S. Park, J. S. Baskin, B. Barwick, O. H. Kwon, and A. H. Zewail, “4D ultrafast electron microscopy: Imaging of atomic motions, acoustic resonances, and moire fringe dynamics,” Ultramicroscopy 110(1), 719 (2009).
http://dx.doi.org/10.1016/j.ultramic.2009.08.005
49.
49. W. X. Liang, G. M. Vanacore, and A. H. Zewail, “Observing (non)linear lattice dynamics in graphite by ultrafast Kikuchi diffraction,” Proc. Natl. Acad. Sci. U. S. A. 111(15), 54915496 (2014).
http://dx.doi.org/10.1073/pnas.1404101111
50.
50. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1991).
51.
51. D. D. L. Chung, “Review graphite,” J. Mater. Sci. 37(8), 14751489 (2002).
http://dx.doi.org/10.1023/A:1014915307738
52.
52. P. B. Hirsch and A. Howie, Electron Microscopy of Thin Crystals (Butterworths, 1965).
53.
53. L. Tang and D. E. Laughlin, “Electron diffraction patterns of fibrous and lamellar textured polycrystalline thin films. 1. Theory,” J. Appl. Crystallogr. 29, 411418 (1996).
http://dx.doi.org/10.1107/S0021889896000404
54.
54. J. M. Cowley and S. Kuwabara, “Electron diffraction intensities from polycrystalline material containing heavy atoms,” Acta Crystallogr. 15(3), 260270 (1962).
http://dx.doi.org/10.1107/S0365110X62000626
55.
55. H. Liu, O.-H. Kwon, J. Tang, and A. H. Zewail, “4D imaging and diffraction dynamics of single-particle phase transition in heterogeneous ensembles,” Nano Lett. 14(2), 946954 (2014).
http://dx.doi.org/10.1021/nl404354g
56.
56. D. K. L. Tsang, B. J. Marsden, S. L. Fok, and G. Hall, “Graphite thermal expansion relationship for different temperature ranges,” Carbon 43(14), 29022906 (2005).
http://dx.doi.org/10.1016/j.carbon.2005.06.009
57.
57. H. Park, X. Wang, S. Nie, R. Clinite, and J. Cao, “Mechanism of coherent acoustic phonon generation under nonequilibrium conditions,” Phys. Rev. B 72(10), 100301R (2005).
http://dx.doi.org/10.1103/PhysRevB.72.100301
58.
58. M. Harb, A. Jurgilaitis, H. Enquist, R. Nüske, C. V. Korff Schmising, J. Gaudin, S. L. Johnson, C. J. Milne, P. Beaud, E. Vorobeva, A. Caviezel, S. O. Mariager, G. Ingold, and J. Larsson, “Picosecond dynamics of laser-induced strain in graphite,” Phys. Rev. B 84(4), 045435 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.045435
59.
59. M. Harb, W. Peng, G. Sciaini, C. T. Hebeisen, R. Ernstorfer, M. A. Eriksson, M. G. Lagally, S. G. Kruglik, and R. J. D. Miller, “Excitation of longitudinal and transverse coherent acoustic phonons in nanometer free-standing films of (001) Si,” Phys. Rev. B 79(9), 094301 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.094301
60.
60. N. Del Fatti, C. Voisin, D. Christofilos, F. Vallee, and C. Flytzanis, “Acoustic vibration of metal films and nanoparticles,” J. Phys. Chem. A 104(18), 43214326 (2000).
http://dx.doi.org/10.1021/jp994051y
61.
61. H. Park, S. Nie, X. Wang, R. Clinite, and J. Cao, “Optical control of coherent lattice motions probed by femtosecond electron diffraction,” J. Phys. Chem. B 109(29), 1385413856 (2005).
http://dx.doi.org/10.1021/jp052857u
62.
62. S. Schäfer, W. X. Liang, and A. H. Zewail, “Structural dynamics of surfaces by ultrafast electron crystallography: Experimental and multiple scattering theory,” J. Chem. Phys. 135(21), 214201 (2011).
http://dx.doi.org/10.1063/1.3663963
63.
63. A. Bosak, M. Krisch, M. Mohr, J. Maultzsch, and C. Thomsen, “Elasticity of single-crystalline graphite: Inelastic x-ray scattering study,” Phys. Rev. B 75(15), 153408 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.153408
64.
64. P. Baum, D. S. Yang, and A. H. Zewail, “4D visualization of transitional structures in phase transformations by electron diffraction,” Science 318(5851), 788792 (2007).
http://dx.doi.org/10.1126/science.1147724
65.
65. J. Hoffrogge, J. P. Stein, M. Kruger, M. Forster, J. Hammer, D. Ehberger, P. Baum, and P. Hommelhoff, “Tip-based source of femtosecond electron pulses at 30 keV,” J. Appl. Phys. 115(9), 094506 (2014).
http://dx.doi.org/10.1063/1.4867185
66.
66. C. Kealhofer, S. M. Foreman, S. Gerlich, and M. A. Kasevich, “Ultrafast laser-triggered emission from hafnium carbide tips,” Phys. Rev. B 86(3), 035405 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.035405
http://aip.metastore.ingenta.com/content/aip/journal/sdy/1/3/10.1063/1.4884937
Loading
/content/aip/journal/sdy/1/3/10.1063/1.4884937
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/sdy/1/3/10.1063/1.4884937
2014-06-24
2014-09-17

Abstract

Ultrafast electron diffraction allows the tracking of atomic motion in real time, but space charge effects within dense electron packets are a problem for temporal resolution. Here, we report on time-resolved pump-probe diffraction using femtosecond single-electron pulses that are free from intra-pulse Coulomb interactions over the entire trajectory from the source to the detector. Sufficient average electron current is achieved at repetition rates of hundreds of kHz. Thermal load on the sample is avoided by minimizing the pump-probe area and by maximizing heat diffusion. Time-resolved diffraction from fibrous graphite polycrystals reveals coherent acoustic phonons in a nanometer-thick grain ensemble with a signal-to-noise level comparable to conventional multi-electron experiments. These results demonstrate the feasibility of pump-probe diffraction in the single-electron regime, where simulations indicate compressibility of the pulses down to few-femtosecond and attosecond duration.

Loading

Full text loading...

/deliver/fulltext/aip/journal/sdy/1/3/1.4884937.html;jsessionid=ua2l8tq4xjez.x-aip-live-03?itemId=/content/aip/journal/sdy/1/3/10.1063/1.4884937&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/sdy

Most read this month

Article
content/aip/journal/sdy
Journal
5
3
Loading

Most cited this month

true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Femtosecond single-electron diffraction
http://aip.metastore.ingenta.com/content/aip/journal/sdy/1/3/10.1063/1.4884937
10.1063/1.4884937
SEARCH_EXPAND_ITEM