Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

High-speed nanomaterial synthesis and discovery

Precise control of process conditions via laboratory-scale automation can rapidly lead, for example, to a new and improved recipe for growing carbon nanotube forests.

Researchers working to develop nanomaterials with novel properties often rely on educated guesses and one-off experiments to gradually improve, but not always optimize, the fabrication process. Consider thin films made with chemical vapor deposition (CVD): A sample substrate is placed in a tube in which the pressure is adjusted and suitable gases are introduced; the tube is inserted into a furnace for heating and cooling, then the sample is removed and analyzed, and the next experiment is set up. In a typical workday, 2–4 experiments can be done. John Hart of MIT and his group have created Robofurnace, shown here, which can execute up to 16 CVD experiments in 24 hours. Built mostly using off-the-shelf components, the robotic system incorporates a magazine that can hold up to 10 sample substrates, a transfer arm that loads each sample into the furnace tube, several different gas lines, pressure- and humidity-control systems, and a furnace (the box on the right) that slides along the tube. Each sample can be processed using a different "recipe." Rapid heating to a given temperature of up to 1100 °C, and subsequent rapid cooling, can be accomplished by precisely positioning the furnace around the sample, then sliding the furnace away. In an early demonstration of Robofurnace's capabilities, the researchers used a sequence of experiments to find a new recipe to grow carbon-nanotube forests—films of vertically aligned CNTs used in myriad commercial applications—that are an order of magnitude more dense than they had grown in a static tube furnace. (C. R. Oliver et al., Rev. Sci. Instrum. 84, 115105, 2013.)—Stephen G. Benka

Commenting has been disabled for this content

Submit comment
Close
Comment moderation successfully completed
ec53185b92e297f26a707ada48e7a20c ptol.magazine_postzxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=www.physicstoday.org/news&pageURL=http://scitation.aip.org/content/aip/magazine/physicstoday/news/10.1063/PT.5.7030'
x100,x101,
Top1,Position1,
Top,Right,