banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.X. Zhang, M. G. Heinz, I. C. Bruce, and L. H. Carney, “A phenomenological model for the responses of auditory-nerve fibers: I. Nonlinear tuning with compression and suppression,” J. Acoust. Soc. Am. 109, 648670 (2001).
2.M. A. Ruggero, “Physiology and coding of sound in the auditory nerve,” in The Mammalian Auditory Pathway: Neurophysiology, edited by A. N. Popper and R. R. Fay (Springer-Verlag, New York, 1992), pp. 34–93.
3.M. C. Liberman, “Auditory-nerve response from cats raised in a low-noise chamber,” J. Acoust. Soc. Am. 63, 442455 (1978).
4.R. L. Winslow and M. B. Sachs, “Single-tone intensity discrimination based on auditory-nerve rate responses in backgrounds of quiet, noise, and with stimulation of the crossed olivocochlear bundle,” Hear. Res. 35, 165190 (1988).
5.I. M. Winter and A. R. Palmer, “Intensity coding in low-frequency auditory-nerve fibers of the guinea pig,” J. Acoust. Soc. Am. 90, 19581967 (1991).
6.M. G. Heinz, H. S. Colburn, and L. H. Carney, “Evaluating auditory performance limits: I. One-parameter discrimination using a computational model for the auditory nerve,” Neural Computation, in press (2001).
7.M. G. Heinz, “Quantifying the effects of the cochlear amplifier on temporal and average-rate information in the auditory nerve,” Ph.D. diss., Massachusetts Institute of Technology, Cambridge, MA (2000).
8.M. B. Sachs and N. Y. S. Kiang, “Two-tone inhibition in auditory-nerve fibers,” J. Acoust. Soc. Am. 43, 11201128 (1968).
9.B. Delgutte, “Two-tone rate suppression in auditory-nerve fibers: Dependence on suppressor frequency and level,” Hear. Res. 49, 225246 (1990).
10.D. D. Greenwood, “A cochlear frequency-position function for several species—29 years later,” J. Acoust. Soc. Am. 87, 25922605 (1990).
11.B. R. Glasberg and B. C. J. Moore, “Derivation of auditory filter shapes from notched-noise data,” Hear. Res. 47, 103138 (1990).
12.R. D. Patterson, I. Nimmo-Smith, J. Holdsworth, and P. Rice, “An efficient auditory filterbank based on the gammatone function,” paper presented at a meeting of the IOC Speech Group on Auditory Modeling at RSRE, December 14–15 (1987).
13.M. B. Sachs and P. J. Abbas, “Rate versus level functions for auditory nerve fibers in cats: Tone burst stimuli,” J. Acoust. Soc. Am. 81, 680691 (1974).
14.W. S. Rhode and P. H. Smith, “Characteristics of tone-pip response patterns in relationship to spontaneous rate in cat auditory nerve fibers,” Hear. Res. 18, 159168 (1985).
15.D. H. Johnson, “The relationship between spike rate and synchrony in responses of auditory-nerve fibers to single tones,” J. Acoust. Soc. Am. 68, 11151122 (1980).
16.M. A. Ruggero, N. C. Rich, A. Recio, S. S. Narayan, and L. Robles, “Basilar-membrane responses to tones at the base of the chinchilla cochlea,” J. Acoust. Soc. Am. 101, 21512163 (1997).
17.N. P. Cooper and W. S. Rhode, “Mechanical responses to two-tone distortion products in the apical and basal turns of the mammalian cochlea,” J. Neurophysiol. 78, 261270 (1997).
18.M. L. Hicks and S. P. Bacon, “Psychophysical measures of auditory nonlinearities as a function of frequency in individuals with normal hearing,” J. Acoust. Soc. Am. 105, 326338 (1999).
19.D. J. Anderson, J. E. Rose, J. E. Hind, and J. F. Brugge, “Temporal position of discharges in single auditory nerve fibers within the cycle of a sinewave stimulus: Frequency and intensity effects,” J. Acoust. Soc. Am. 49, 11311139 (1971).
20.R. V. Harrison, “Rate-versus-intensity function and related AP responses in normal and pathological guinea pig and human cochleas,” J. Acoust. Soc. Am. 70, 10361044 (1981).
21.E. M. Relkin and J. R. Doucet, “Recovery from prior stimulation. I: Relationship to spontaneous firing rates of primary auditory neurons,” Hear. Res. 55, 215222 (1991).

Data & Media loading...


Article metrics loading...


Full text loading...

This is a required field
Please enter a valid email address

Oops! This section, does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Auditory nerve model for predicting performance limits of normal and impaired listeners