Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.ANSI (1969). ANSI S3.5-1969, American National Standard Methods for Calculation of the Articulation Index (American National Standards Institute, New York).
2.ANSI (1989). ANSI S3.6-1989, American National Standard Specification for Audiometers (American National Standards Institute, New York).
3.ANSI (1997). ANSI S3.5-1997, American National Standard Methods for Calculation of the Speech Intelligibility Index (American National Standards Institute, New York).
4.Ching, T. Y. C. , Dillon, H. , and Byrne, D. (1998). “Speech recognition of hearing-impaired listeners: Predictions from audibility and the limited role of high-frequency amplification,” J. Acoust. Soc. Am. 103, 11281140.
5.French, N. R. , and Steinberg, J. C. (1947). “Factors governing the intelligibility of speech sounds,” J. Acoust. Soc. Am. 19, 90199.
6.Gifford, R. H. , and Bacon, S. P. (2000). “Contributions of suppression and excitation to simultaneous masking: Effects of signal frequency and masker-signal frequency relation,” J. Acoust. Soc. Am. 107, 21882200.
7.Grant, K. W. , and Braida, L. D. (1991). “Evaluating the articulation index for auditory-visual stimuli,” J. Acoust. Soc. Am. 89, 29522960.
8.Hicks, M. L. , and Bacon, S. P. (1999). “Psychophysical measures of auditory nonlinearities as a function of frequency in individuals with normal hearing,” J. Acoust. Soc. Am. 105, 326338.
9.Hogan, C. A. , and Turner, C. W. (1998). “High-frequency audibility: Benefits for hearing-impaired listeners,” J. Acoust. Soc. Am. 104, 432441.
10.Institute of Electrical and Electronic Engineers (1969). IEEE Recommended Practice for Speech Quality Measures (IEEE, New York).
11.Lopez-Povea, E. A. , Plack, C. J. , and Meddis, R. (2003). “Cochlear nonlinearity between 500 and 8000 Hz in listeners with normal hearing,” J. Acoust. Soc. Am. 113, 951960.
12.Rhode, W. S. , and Cooper, N. P. (1996). “Nonlinear mechanics in the apical turn of the chinchilla cochlea in vivo,” Aud. Neuro. 3, 101121.
13.Robles, L. , and Ruggero, M. A. (2001). “Mechanics of the mammalian cochlea,” Physiol. Rev. 81, 13051352.
14.Ruggero, M. A. , Rich, N. C. , Recio, A. , Narayan, S. S. , and Robles, L. (1997). “Basilar-membrane responses to tones at the base of the chincilla cochlea,” J. Acoust. Soc. Am. 101, 21512163.
15.Speaks, C. , Karmen, J. L. , and Benitez, L. (1967). “Effect of a competing message on synthetic speech identification,” J. Speech. Hear. Res. 10, 390396.
16.Studebaker, G. A. , and Sherbecoe, R. L. (2002). “Intensity-importance functions for bandlimited monosyllabic words,” J. Acoust. Soc. Am. 111, 14221436.
17.Studebaker, G. A. , Sherbecoe, R. L. , McDaniel, D. M. , and Gwaltney, C. A. (1999). “Monosyllabic word recognition at higher-than-normal speech and noise levels,” J. Acoust. Soc. Am. 105, 24312444.
18.Turner, C. W. , and Brus, S. L. (2001). “Providing low- and mid-frequency speech information to listeners with sensorineural hearing loss,” J. Acoust. Soc. Am. 109, 29993006.

Data & Media loading...


Article metrics loading...


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd