1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Response of an ultrasonically excited bubble near a fixed rigid object
Rent:
Rent this article for
Access full text Article
/content/asa/journal/arlo/6/3/10.1121/1.1898344
1.
1.D. L. Miller and R. M. Thomas, “Contrast agent gas bodies enhance hemolysis induced by lithotripter shockwaves and high-intensity focused ultrasound in whole blood,” Ultrasound Med. Biol. 22, 10891095 (1993).
2.
2.D. Dalecki, C. H. Raeman, S. Z. Child, C. Cox, C. W. Francis, R. S. Meltzer, and E. L. Carstensen, “Hemolysis in vivo from exposure to pulsed ultrasound,” Ultrasound Med. Biol. 23, 307313 (1997).
3.
3.W. S. Chen, A. A. Brayman, T. J. Matula, L. A. Crum, and M. W. Miller, “The pulse length dependence of inertial cavitation dose and hemolysis,” Ultrasound Med. Biol. 29, 739748 (2003).
4.
4.E. A. Brujan, G. S. Keen, A. Vogel, and J. R. Blake, “The final stage of the collapse of a cavitation bubble close to a rigid boundary,” Phys. Fluids 14, 8592 (2002).
5.
5.Y. Tomita, P. B. Robinson, R. P. Tong, and J. R. Blake, “Growth and collapse of cavitation bubbles near a curved rigid boundary,” J. Fluid Mech. 466, 259283 (2002).
6.
6.K. Sato, Y. Tomita, and A. Shima, “Numerical analysis of a gas bubble near a rigid boundary in an oscillatory pressure field,” J. Acoust. Soc. Am. 95, 24162424 (1994).
7.
7.B. Krasovitski and E. Kimmel, “Gas bubble pulsation in a semiconfined space subjected to ultrasound,” J. Acoust. Soc. Am. 109, 891898 (2001).
8.
8.E. A. Brujan, “The role of cavitation microjets in the therapeutic applications of ultrasound,” Ultrasound Med. Biol. 30, 381387 (2004).
9.
9.G. L. Chahine and K. M. Kalumuck, “BEM software for free surface flow simulation including fluid–structure interaction effects,” Int. J. Comp. Appl. Tech. 11(3–5), 177198 (1998).
10.
10.A. A. Brayman, C. C. Church, and M. W. Miller, “Re-evaluation of the concept that high cell concentrations ‘protect’ cells in vitro from ultrasonically induced lysis,” Ultrasound Med. Biol. 22, 497514 (1996).
11.
11.H. J. Bleeker, K. K. Shung, and J. L. Barnhart, “Ultrasonic characterization of Albunex®, a new contrast agent,” J. Acoust. Soc. Am. 87, 17921797 (1990).
12.
12.F. R. Young, Cavitation (McGraw-Hill, New York, 1989).
13.
13.A. Prosperetti, “The thermal behavior of oscillating gas bubble,” J. Fluid Mech. 222, 587616 (1991).
14.
14.S. M. Gracewski, H. Miao, and D. Dalecki, “Ultrasonic excitation of a bubble near a rigid or deformable sphere: Implications for ultrasonically induced hemolysis,” J. Acoust. Soc. Am. 117, 14401447 (2005).
15.
15.G. L. Chahine, “Cavitation dynamics at microscale level,” J. Heart Valve Dis. 3, S103S116 (1994).
http://aip.metastore.ingenta.com/content/asa/journal/arlo/6/3/10.1121/1.1898344
Loading
/content/asa/journal/arlo/6/3/10.1121/1.1898344
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/arlo/6/3/10.1121/1.1898344
2005-06-24
2014-11-01
Loading

Full text loading...

true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Response of an ultrasonically excited bubble near a fixed rigid object
http://aip.metastore.ingenta.com/content/asa/journal/arlo/6/3/10.1121/1.1898344
10.1121/1.1898344
SEARCH_EXPAND_ITEM