Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
Y. A. Pishchalnikov, O. A. Sapozhnikov, M. R. Bailey, J. C. Williams, Jr., R. O. Cleveland, T. Colonius, L. A. Crum, A. P. Evan, and J. A. McAteer, “Cavitation bubble cluster activity in the breakage of kidney stones by lithotripter shockwaves,” J. Endourol. 17, 435446 (2003).
C. C. Church, “A theoretical study of cavitation generated by an extracorporeal shock wave lithotripter,” J. Acoust. Soc. Am. 86, 215227 (1989).
M. J. Choi, A. J. Coleman, and J. E. Saunders, “The influence of fluid properties and pulse amplitude on bubble dynamics in the field of a shock wave lithotripter,” Phys. Med. Biol. 38, 15611573 (1993).
T. J. Matula, P. R. Hilmo, M. R. Bailey, and L. A. Crum, “In vitro sonoluminescence and sonochemistry studies from an electrohydraulic shock wave lithotripter,” Ultrasound Med. Biol. 28, 11991207 (2002).
O. A. Sapozhnikov, V. A. Khokhlova, M. R. Bailey, J. C. Williams, Jr., J. A. McAteer, R. O. Cleveland, and L. A. Crum, “Effect of overpressure and pulse repetition frequency on shock wave lithotripsy,” J. Acoust. Soc. Am. 112, 11831195 (2002).
D. Z. Zhang and A. Prosperetti, “Averaged equations for inviscid disperse two-phase flow,” J. Fluid Mech. 267, 185219 (1994).
D. Z. Zhang and A. Prosperetti, “Ensemble phase-averaged equations for bubbly flows,” Phys. Fluids 6, 29562970 (1994).
M. Tanguay, “Computation of bubbly cavitating flow in shock wave lithotripsy,” Ph.D. dissertation, California Institute of Technology, 2003.
M. Tanguay and T. Colonius, “Progress in modeling and simulation of shock wave lithotripsy (SWL),” Fifth Int. Symp. on Cavitation (CAV2003), Osaka, Japan, 1–4 November, 2003.
E. A. Zabolotskaya, “Interaction of gas bubbles in a sound field,” Sov. Phys. Acoust. 30, 365368 (1984).
Y. A. Ilinskii and E. A. Zabolotskaya, “Cooperative radiation and scattering of acoustic waves by bubbles in liquid,” J. Acoust. Soc. Am. 92, 28372841 (1992).
A. A. Doinikov, “Mathematical model for collective bubble dynamics in strong ultrasound fields,” J. Acoust. Soc. Am. 116, 821827 (2004).
G. N. Kuznetsov and I. E. Shchekin, “Interaction of pulsating bubbles in a viscous liquid,” Sov. Phys. Acoust. 18, 466469 (1973).
T. G. Leighton, The Acoustic Bubble (Academic, San Diego, 1994).
A. Prosperetti, “The equation of bubble dynamics in a compressible liquid,” Phys. Fluids 30, 36263628 (1987).
J. B. Keller and M. Miksis, “Bubble oscillations of large amplitude,” J. Acoust. Soc. Am. 68, 628633 (1980).
E. A. Zabolotskaya, Y. A. Ilinskii, G. D. Meegan, and M. F. Hamilton, “Bubble interactions in clouds produced during shock wave lithotripsy,” Proceedings of the 2004 IEEE International UFFC Joint 50th Anniversary Conference, pp. 890–893.

Data & Media loading...


Article metrics loading...


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd