1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
Mean and variance of the forward field propagated through three-dimensional random internal waves in a continental-shelf waveguide
Rent:
Rent this article for
USD
10.1121/1.1993107
/content/asa/journal/jasa/118/6/10.1121/1.1993107
http://aip.metastore.ingenta.com/content/asa/journal/jasa/118/6/10.1121/1.1993107
View: Figures

Figures

Image of FIG. 1.
FIG. 1.

Geometry of mid-latitude Atlantic continental shelf and Arctic environments with two-layer water column of total depth , and upper layer depth of . The bottom sediment half-space is composed of sand. The internal wave disturbances have coherence length scales and in the and directions, respectively, and are measured with positive height measured downward from the interface between the upper and lower water layers.

Image of FIG. 2.
FIG. 2.

(a) Normalized spectrum of internal wave field over an observation period of approximately 10 min with minimum wave number . The spectrum is computed using Eq. (22) with a dependence at high frequencies. (b) Correlation function of the isotropic internal wave field with a coherence length of 100 m. The correlation function was obtained from the inverse Fourier transform of the internal wave spectrum plotted in (a).

Image of FIG. 3.
FIG. 3.

(a) Fresnel half-width for receiver ranges and . The Fresnel width is approximately equal to , where is the source-receiver separation and is the range from source to inhomogeneity. (b) The maximum Fresnel width as a function of source-receiver separation .

Image of FIG. 4.
FIG. 4.

Acoustic field intensity at 415 Hz as a function of range and depth in the mid-latitude Atlantic continental shelf waveguide of Fig. 1, when there are no internal waves present so that the waveguide is undisturbed. The boundary between the warm and cool water is at the depth of 30 m from the water surface in this static waveguide. The source is at 50 m depth with source level 0 dB re at 1 m. The acoustic intensity exhibits range- and depth-dependent variations due to coherent interference between waveguide modes.

Image of FIG. 5.
FIG. 5.

Intensities of the (a) mean or coherent field, (b) variance or incoherent field, and (c) the total field at 415 Hz as functions of range and depth in the mid-latitude Atlantic continental shelf waveguide of Fig. 1 when there is a random internal wave field present in the waveguide. The internal wave disturbances have a height standard deviation of and coherence lengths of . The source is at 50 m depth with source level 0 dB re at 1 m. This medium is only slightly random and the total intensity in (c) is dominated by the coherent intensity out to 50 km range and exhibits range- and depth-dependent variations due to coherent interference between waveguide modes, similar to the static waveguide example in Fig. 4. Figure 5(d) shows the acoustic intensity as a function of range at a single receiver depth of 50 m for the fields shown in (a)–(c). For a comparison, the acoustic intensity of the static waveguide is also plotted.

Image of FIG. 6.
FIG. 6.

Similar to Fig. 5, but for a waveguide with an internal wave height standard deviation of . This medium is highly random and the total intensity in (c) is dominated by the variance or incoherent intensity beyond the 11 km range. The total acoustic intensity decays monotonically as a function of range at sufficiently long ranges since the field is now completely incoherent and the waveguide loses the coherent range- and depth-dependent variations due to modal interference.

Image of FIG. 7.
FIG. 7.

Contributions of the waveguide modes to the depth-integrated total intensity of the forward field at (a) the source location, (b) 1 km, (c) 10 km, and (d) 50 km ranges from the source for a source strength of 0 dB re at 1 m. All values are absolute except those in (a), which are normalized by the maximum modal contribution.

Image of FIG. 8.
FIG. 8.

Acoustic intensity at a single receiver depth of 50 m in the presence of an internal wave field with coherence lengths and height standard deviations of (a) and (b) .

Image of FIG. 9.
FIG. 9.

Effect of (a) including and (b) neglecting internal wave density fluctuations on acoustic transmission in an Arctic waveguide with geometry described in Fig. 1. The internal wave field has coherence lengths of and a height standard deviation of . The acoustic intensity is plotted as a function of range for the source and receiver at 50 m depth.

Image of FIG. 10.
FIG. 10.

Comparison of intensities from 2-D Monte-Carlo simulations and 3-D analytical model at the single receiver depth of 50 m in the presence of an internal wave field with height standard deviation of . A total of 1000 simulations were made using the parabolic equation to compute the 2-D Monte Carlo field statistics. (a) Coherent field comparison, (b) incoherent field comparison, (c) total field comparison, (d) only the 2-D Monte-Carlo simulated acoustic intensities of the coherent, incoherent, and total fields used in (a)–(c).

Image of FIG. 11.
FIG. 11.

Similar to Fig. 10, but for a waveguide with an internal wave height standard deviation of .

Image of FIG. 12.
FIG. 12.

Total depth-integrated intensities for the waveguide used in Fig. 4. The static case with no internal waves in the medium is compared to the 3-D analytical model and 2-D Monte-Carlo simulations with internal wave height standard deviations of and . The attenuation or power loss due to scattering is most significant in the 3-D analytical model for the highly random waveguide.

Loading

Article metrics loading...

/content/asa/journal/jasa/118/6/10.1121/1.1993107
2005-12-01
2014-04-20
Loading

Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Mean and variance of the forward field propagated through three-dimensional random internal waves in a continental-shelf waveguide
http://aip.metastore.ingenta.com/content/asa/journal/jasa/118/6/10.1121/1.1993107
10.1121/1.1993107
SEARCH_EXPAND_ITEM