Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.Austin, S. F. and Titze, I. R. (1997). “The effect of subglottal resonance upon vocal fold vibration,” J. Voice0892-1997 11, 391402.
2.Alipour, F. , Berry, D. A. , and Titze, I. R. (2000). “A finite element model of vocal fold vibration,” J. Acoust. Soc. Am.0001-4966 108, 30033012.
3.Berry, D. A. , Herzel, H. , Titze, I. R. , and Krischer, K. (1994). “Interpretation of biomechanical simulations of normal and chaotic vocal fold oscillations with empirical eigenfunctions,” J. Acoust. Soc. Am.0001-4966 95, 35953604.
4.Berry, D. A. , Montequin, D. W. , and Tayama, N. (2001). “High-speed, digital imaging of the medial surface of the vocal folds,” J. Acoust. Soc. Am.0001-4966 110, 25392547.
5.Berry, D. A. , and Titze, I. R. (1996). “Normal modes in a continuum model of vocal fold tissues,” J. Acoust. Soc. Am.0001-4966 100, 33453354.
6.Doellinger, M. , Berry, D. A. , and Berke, G. S. (2005). “Medial surface dynamics of an in vivo canine vocal fold during phonation,” J. Acoust. Soc. Am.0001-4966 117, 31743183.
7.Herzel, H. , Berry, D. A. , Titze, I. R. , and Saleh, M. M. (1994). “Analysis of vocal disorders with methods from nonlinear dynamics,” J. Speech Hear. Res.0022-4685 37, 10081019.
8.Ishizaka, K. , Matsudaira, M. , and Kaneko, T. (1976). “Input acoustic-impedance measurement of the subglottal system,” J. Acoust. Soc. Am.0001-4966 60, 190197.
9.Mergell, P. , and Herzel, H. (1997). “Modeling biphonation — The role of the vocal tract,” Speech Commun.0167-6393 22, 14l154.
10.Neubauer, J. , Mergell, P. , Eysholdt, U. , and Herzel, H. (2001). “Spatio-temporal analysis of irregular vocal fold oscillations: biphonation due to desynchronization of spatial modes,” J. Acoust. Soc. Am.0001-4966 110, 31793192.
11.Svec, J. G. , Horacek, J. , Sram, F. , and Vesely, J. (2000). “Resonance properties of the vocal folds: in vivo laryngoscopic investigation of the externally excited laryngeal vibrations,” J. Acoust. Soc. Am.0001-4966 108, 397407.
12.Thomson, S. L. , Mongeau, L. , and Frankel, S. H. (2005). “Aerodynamic transfer of energy to the vocal folds,” J. Acoust. Soc. Am.0001-4966 118, 16891700.
13.Titze, I. R. , and Strong, W. J. (1975). “Normal modes in vocal fold tissues,” J. Acoust. Soc. Am.0001-4966 57, 736744.
14.Zhang, Y. , and Jiang, J. J. (2005). “Spatiotemporal chaos in excised larynx vibrations,” Phys. Rev. E1063-651X 72, Art. No. 035201R, 1–4.

Data & Media loading...


Article metrics loading...



Previous investigations have shown that one mechanism of irregular vocal fold vibration may be a desynchronization of two or more vibratory modes of the vocal fold tissues. In the current investigation, mechanisms of irregular vibration were further examined using a self-oscillating, physical model of vocal fold vibration, a hemi-model methodology, and high-speed, stereoscopic, digital imaging. Using the method of empirical eigenfunctions, a spatiotemporal analysis revealed mechanisms of irregular vibration in subharmonic phonation and biphonation, which were not disclosed in a standard acoustic spectrum.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd