1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
A fast near-field method for calculations of time-harmonic and transient pressures produced by triangular pistons
Rent:
Rent this article for
USD
10.1121/1.2356839
/content/asa/journal/jasa/120/5/10.1121/1.2356839
http://aip.metastore.ingenta.com/content/asa/journal/jasa/120/5/10.1121/1.2356839

Figures

Image of FIG. 1.
FIG. 1.

Triangular source geometries defined for near-field pressure calculations. The near-field pressure is evaluated above the vertex (indicated in bold), and the shape of the triangle (right, acute, or obtuse) is defined by the angle . The height of each triangle is indicated by , and the bases of the individual right triangles are indicated by , , and . The acute triangle in (b) is represented by the sum of two right triangles, and the obtuse triangle in (c) is defined as the difference between two right triangles.

Image of FIG. 2.
FIG. 2.

Superposition operations that calculate near-field pressures generated by the equilateral triangular source ABC, where each side is 4 wavelengths long. The vertex (indicated in bold) is the projection of the observation point onto the source plane, which partitions the radiating source into three triangles with sides . (a) The field point is located inside of the equilateral triangular source, and the total field is obtained by adding the contributions from the three triangles that share a vertex at . (b) The field point is located outside of the equilateral triangular source, and the total pressure is obtained by adding and subtracting the contributions from the three triangles that share a vertex at .

Image of FIG. 3.
FIG. 3.

Simulated time-harmonic pressure field in the plane for an equilateral triangular source with sides equal to 4 wavelengths. The reference field is generated by the impulse response method computed with -point Gauss quadrature.

Image of FIG. 4.
FIG. 4.

Peak normalized error for calculations of near-field pressures generated by the triangular source in Fig. 2 plotted as a function of the computation time. The results show that the FNM consistently achieves smaller errors in less time than exact and approximate impulse response calculations for time-harmonic excitations.

Image of FIG. 5.
FIG. 5.

Simulated transient pressure field in the plane for a equilateral triangular source with sides equal to 4 wavelengths. For this calculation, the excitation is the Hanning-weighted pulse in Eq. (16), and the transient pressure is evaluated at 85 time points in an -point grid. The result is plotted at after the initiation of the input pulse.

Image of FIG. 6.
FIG. 6.

The peak normalized error plotted as a function of the computation time for the FNM/time-space decomposition method, the impulse response method, and methods that approximate the impulse response. These errors and times are evaluated for transient near-field calculations of an equilateral triangular source with sides equal to 4 wavelengths. The excitation for these calculations is a Hanning-weighted pulse with a center frequency of .

Tables

Generic image for table
TABLE I.

Basis functions for time-space decomposition with a Hanning-weighted pulse.

Generic image for table
TABLE II.

Number of Gauss abscissas, computation times, and time ratios that describe the reduction in the computation time achieved with the fast near-field method relative to the impulse response and methods that approximate the impulse response for peak errors of 10% and 1%. The FNM and exact impulse response results are evaluated for time-harmonic calculations on a -point grid located in the plane, and the FIELD II and smoothed impulse response results are evaluated on an -point grid in the plane that is slightly offset from the transducer face.

Generic image for table
TABLE III.

Comparisons of computation times, input parameters, and time ratios that describe the reduction in the computation time achieved with the FNM and time-space decomposition relative to the exact and approximate impulse response for specified maximum errors of 10% and 1%. For FNM, impulse response, and FIELD II calculations with “usetriangles,” these transient results are evaluated in an -spatial point computed at 85 time points, and for the smoothed impulse response, the results are valued at the same temporal points in a restricted -point spatial grid.

Loading

Article metrics loading...

/content/asa/journal/jasa/120/5/10.1121/1.2356839
2006-11-01
2014-04-19
Loading

Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A fast near-field method for calculations of time-harmonic and transient pressures produced by triangular pistons
http://aip.metastore.ingenta.com/content/asa/journal/jasa/120/5/10.1121/1.2356839
10.1121/1.2356839
SEARCH_EXPAND_ITEM