Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.Y. Tomita, P. B. Robinson, R. P. Tong, and J. R. Blake, “Growth and collapse of cavitation bubbles near a curved rigid boundary,” J. Fluid Mech.0022-1120 466, 259283 (2002).
2.K. Sato, Y. Tomita, and A. Shima, “Numerical-analysis of a gas bubble near a rigid boundary in an oscillatory pressure field,” J. Acoust. Soc. Am.0001-4966 95(5), 24162424 (1994).
3.E. A. Brujan, K. Nahen, P. Schmidt, and A. Vogel, “Dynamics of laser-induced cavitation bubbles near an elastic boundary,” J. Fluid Mech.0022-1120 433, 251281 (2001).
4.C. C. Church, “The effects of an elastic solid surface layer on the radial pulsations of gas-bubbles,” J. Acoust. Soc. Am.0001-4966 97(3), 15101521 (1995).
5.S. K. Zhao, K. W. Ferrara, and P. A. Dayton, “Asymmetric oscillation of adherent targeted ultrasound contrast agents,” Appl. Phys. Lett.0003-6951 87(13), 134103 (2005).
6.J. P. Christiansen and J. R. Lindner, “Molecular and cellular imaging with targeted contrast ultrasound,” Proc. IEEE0018-9219 93(4), 809818 (2005).
7.P. A. Schumann, J. P. Christiansen, R. M. Quigley, T. P. McCreery, R. H. Sweitzer, E. C. Unger, J. R. Lindner, and T. O. Matsunaga, “Targeted-microbubble binding selectively to GPIIb IIIa receptors of platelet thrombi,” Invest. Radiol.0020-9996, 37(11), 587593 (2002).
8.H. Leong-Poi, J. Christiansen, A. L. Klibanov, S. Kaul, and J. R. Lindner, “Noninvasive assessment of angiogenesis by ultrasound and microbubbles targeted toalpha(v)-integrins,” Circulation0009-7322 107(3), 455460 (2003).
9.S. Zhao, M. Borden, S. H. Bloch, D. Kruse, K. W. Ferrara, and P. A. Dayton, “Radiation-force assisted targeting facilitates ultrasonic molecular imaging,” Mol. Imaging1535-3508 3(3), 135148 (2004).
10.J. J. Rychak, A. L. Klibanov, and J. A. Hossack, “Acoustic radiation force enhances targeted delivery of ultrasound contrast microbubbles: in vitro verification,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control0885-3010 52(3), 421433 (2005).
11.K. E. Morgan, J. S. Allen, P. A. Dayton, J. E. Chomas, A. L. Klibanov, and K. W. Ferrara, “Experimental and theoretical evaluation of microbubble behavior: Effect of transmitted phase and bubble size,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control0885-3010 47(6), 14941509 (2000).
12.B. Krasovitski and E. Kimmel, “Gas bubble pulsation in a semiconfined space subjected to ultrasound,” J. Acoust. Soc. Am.0001-4966 109(3), 891898 (2001).
13.G. M. Lanza, R. L. Trousil, K. D. Wallace, J. H. Rose, C. S. Hall, M. J. Scott, J. G. Miller, P. R. Eisenberg, P. J. Gaffney, and S. A. Wickline, “In vitro characterization of a novel, tissue-targeted ultrasonic contrast system with acoustic microscopy,” J. Acoust. Soc. Am.0001-4966 104(6), 36653672 (1998).
14.P. A. Dayton, K. E. Morgan, A. L. S. Klibanov, G. Brandenburger, K. R. Nightingale, and K. W. Ferrara, “A preliminary evaluation of the effects of primary and secondary radiation forces on acoustic contrast agents,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control0885-3010 44(6), 12641277 (1997).
15.P. A. Dayton, K. E. Morgan, A. L. Klibanov, G. H. Brandenburger, and K. W. Ferrara, “Optical and acoustical observations of the effects of ultrasound on contrast agents,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control0885-3010 46(1), 220232 (1999).
16.J. S. Allen, D. E. Kruse, P. A. Dayton, and K. W. Ferrara, “Effect of coupled oscillations on microbubble behavior,” J. Acoust. Soc. Am.0001-4966 114(3), 16781690 (2003).
17.Y. T. Hu, S. P. Qin, T. Hu, K. W. Ferrara, and Q. Jiang, “Asymmetric oscillation of cavitation bubbles in a microvessel and its implications upon mechanisms of clinical vessel injury in shock-wave lithotripsy,” Int. J. Non-Linear Mech.0020-7462 40(2–3), 341350 (2005).

Data & Media loading...


Article metrics loading...



In ultrasonic molecular imaging, encapsulated micron-sized gas bubbles are tethered to a blood vessel wall by targeting ligands. A challenging problem is to detect the echoes from adherent microbubbles and distinguish them from echoes from nonadherent agents and tissue. Echoes from adherent contrast agents are observed to include a high amplitude at the fundamental frequency, and significantly different spectral shape compared with free agents . Mechanisms for the observed acoustical difference and potential techniques to utilize these differences for molecular imaging are proposed.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd