1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Why do transposed stimuli enhance binaural processing?: Interaural envelope correlation vs envelope normalized fourth moment
Rent:
Rent this article for
Access full text Article
/content/asa/journal/jasa/121/1/10.1121/1.2401225
1.
1.Bernstein, L. R. , and Trahiotis, C. (1994). “Detection of interaural delay in high-frequency SAM tones, two-tone complexes, and bands of noise,” J. Acoust. Soc. Am.0001-4966 95, 35613567.
http://dx.doi.org/10.1121/1.409973
2.
2.Bernstein, L. R. , and Trahiotis, C. (2002). “Enhancing sensitivity to interaural delays at high frequencies by using transposed stimuli,” J. Acoust. Soc. Am.0001-4966 112, 10261036.
http://dx.doi.org/10.1121/1.1497620
3.
3.Bernstein, L. R. , and Trahiotis, C. (2003). “Enhancing interaural-delay-based extents of laterality at high frequencies by using ‘transposed stimuli,’J. Acoust. Soc. Am.0001-4966 113, 33353347.
http://dx.doi.org/10.1121/1.1570431
4.
4.Bernstein, L. R. , and Trahiotis, C. (2004). “The apparent immunity of high-frequency transposed stimuli to low-frequency binaural interference,” J. Acoust. Soc. Am.0001-4966 116, 30623069.
http://dx.doi.org/10.1121/1.1791892
5.
5.Bernstein, L. R. , and Trahiotis, C. (2005). “Measures of extents of laterality for high-frequency ‘transposed’ stimuli under conditions of binaural interference,” J. Acoust. Soc. Am.0001-4966 118, 16261635.
http://dx.doi.org/10.1121/1.1984827
6.
6.Bernstein, L. R. , Par, Steven van de , and Trahiotis, C. (1999). “The normalized correlation: Accounting for thresholds obtained with Gaussian and “low-noise” masking noise,” J. Acoust. Soc. Am.0001-4966 106, 870876.
http://dx.doi.org/10.1121/1.428051
7.
7.Dye, R. H. , Jr., Niemiec, A. J. , and Stellmack, M. A. (1994). “Discrimination of interaural envelope delays: The effect of randomizing component starting phase,” J. Acoust. Soc. Am.0001-4966 95, 463470.
http://dx.doi.org/10.1121/1.408341
8.
8.Hartmann, W. M. (1987). “Temporal fluctuations and the discrimination of spectrally dense signals by human listeners,” in Auditory Processing of Complex Sound, edited by W. A. Yose and C. S. Watson (Erlbaum, Hillsdale, NJ).
9.
9.Hartmann, W. M. and Pumplin, J. (1988). “Noise power fluctuations and the masking of sine signals,” J. Acoust. Soc. Am.0001-4966 83, 22772289.
http://dx.doi.org/10.1121/1.396358
10.
10.Henning, G. B. , and Ashton, J. (1981). “The effect of carrier and modulation frequency on lateralization based on interaural phase and interaural group delay,” Hear. Res.0378-5955 4, 186194.
11.
11.Levitt, H. (1971). “Transformed up-down methods in psychoacoustics,” J. Acoust. Soc. Am.0001-4966 49, 467477.
http://dx.doi.org/10.1121/1.1912375
12.
12.Nuetzel, J. M. , and Hafter, E. R. (1976). “Lateralization of complex waveforms: Effects of fine-structure, amplitude, and duration,” J. Acoust. Soc. Am.0001-4966 60, 13391346.
http://dx.doi.org/10.1121/1.381227
13.
13.Nuetzel, J. M. , and Hafter, E. R. (1981). “Discrimination of interaural delays in complex waveforms: Spectral effects,” J. Acoust. Soc. Am.0001-4966 69, 11121118.
http://dx.doi.org/10.1121/1.385690
14.
14.Par, S. van de and Kohlrausch, A. (1997). “A new approach to comparing binaural masking level differences at low and high frequencies,” J. Acoust. Soc. Am.0001-49660001-4966 101, 16711680.
http://dx.doi.org/10.1121/1.418151
http://aip.metastore.ingenta.com/content/asa/journal/jasa/121/1/10.1121/1.2401225
Loading
/content/asa/journal/jasa/121/1/10.1121/1.2401225
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/jasa/121/1/10.1121/1.2401225
2006-12-08
2014-10-31

Abstract

High-frequency, “transposed” stimuli have been shown to yield enhanced processing of ongoing interaural temporal disparities (ITDs). This paper concerns determining which aspect or aspects of the envelopes of such stimuli mediate enhanced resolution of ITD. Behavioral measures and quantitative analyses utilizing special classes of transposed stimuli show that the “internal” interaural envelope correlation accounts both qualitatively and quantitatively for the enhancement. In contrast, the normalized fourth moment of the envelope , which provides an index of the degree to which the envelopes of high-frequency stimuli fluctuate, does not lead to a successful accounting of the data.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/121/1/1.2401225.html;jsessionid=gemb56gc18cgn.x-aip-live-02?itemId=/content/asa/journal/jasa/121/1/10.1121/1.2401225&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Why do transposed stimuli enhance binaural processing?: Interaural envelope correlation vs envelope normalized fourth moment
http://aip.metastore.ingenta.com/content/asa/journal/jasa/121/1/10.1121/1.2401225
10.1121/1.2401225
SEARCH_EXPAND_ITEM