banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
Higher-order acoustic diffraction by edges of finite thickness
Rent this article for


Image of FIG. 1.
FIG. 1.

(Color online) (a) 2D cross-sectional view of diffraction by infinitely long straight truncated wedges of two thicknesses. “S” and “R” indicate the locations of the point source and receiver, respectively. (b) Three-dimensional (3D) view of diffraction by an infinitely long straight truncated wedge.

Image of FIG. 2.
FIG. 2.

Comparison between laboratory data and knife-edge diffraction model. The “+” symbol indicates measured diffraction by the leading-edge of an aluminum disk with a diameter of and thickness of . The solid curve is the model prediction based on an infinitely long knife edge from Pierce (1974) and with the curvature of the edge accounted for using the method described in Stanton et al. (2007). The dashed curve is the sum of the first-order diffracted waves from the two right-angle wedges at .

Image of FIG. 3.
FIG. 3.

(Color online) Geometry illustrating different diffraction regions associated with diffraction by an infinitely long straight wedge. 2D cross-sectional view.

Image of FIG. 4.
FIG. 4.

(Color online) Comparison between the exact solution [Eq. (2a)–(2c) normalized by ] and the diffraction amplitude defined in Eq. (5) and based on an asymptotic expansion of , i.e., Eq. (9), as a function of range to the apex. The circle on the solid curve appearing at corresponds to the position about away from the apex, or the thickness of the disk used in generating Fig. 2.

Image of FIG. 5.
FIG. 5.

(Color online) Diagram of higher-order diffraction.

Image of FIG. 6.
FIG. 6.

Geometry illustrating model angles and ranges for the diffraction by an infinitely long straight truncated wedge or a double-edge. 2D cross-sectional view.

Image of FIG. 7.
FIG. 7.

Coefficient vs angle for several cases. The dashed curve corresponds to the limit of the thickness , the dot-dashed curve is for the limit determined by Eq. (41), and the solid curve corresponds to interpolated computed from the interpolation function Eq. (32) with and the frequency of and a fit to laboratory data, as described later in this section.

Image of FIG. 8.
FIG. 8.

The ratio of width to wavelength of the truncated wedge, which is required to make the difference in edge diffraction between a knife edge and a double edge of finite thickness less than 5%, vs the scattering angle for a backscattering geometry.

Image of FIG. 9.
FIG. 9.

Diffraction amplitude normalized by the converged amplitude as a function of diffraction orders at two different incident angles for a monostatic scattering geometry.

Image of FIG. 10.
FIG. 10.

Comparison of laboratory data involving an aluminum disk with various diffraction models.

Image of FIG. 11.
FIG. 11.

(Color online) Comparison of the measured partial wave target strength of an aluminum disk (diameter of ) of various thickness (, 1.0, 1.5, and ) with the model of all orders of diffractions [Eq. (28)] at different angles. For the scattering angle at 90° (bottom right), the actual angle is 89.6° to exclude the “edge-on” specular term.

Image of FIG. 12.
FIG. 12.

(a) Geometry and notations of the parameters for diffraction by a hard strip. The view is along the infinite length of the strip and the distance between points “” and “” is the width . (b) Comparison of data (Medwin et al., 1982) with the second-order diffraction model [Eq. (47)] (solid) and Medwin’s “double” or second-order diffraction (dashed). The data are the ratio of the total field to that of one-half of the total first-order diffraction (ray paths and ). The model parameters are , , , and [Eq. (32)]. The distances from the strip to the source and the receiver are [, see (a)] and [, see (a)], respectively. The width of the strip is . The frequencies are from about . Note that the horizontal axis in Medwin et al. is frequency in log-scale and we use a dimensionless variable kw on a linear scale, where is the width of the strip.


Generic image for table

Values of and diffraction in three diffraction regions shown in Fig. 3 computed using Eqs. (11)–(13), (19), and (20). In obtaining the results, we have assumed and in our computations. Note that since , , where .


Article metrics loading...


Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Higher-order acoustic diffraction by edges of finite thickness