Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.T. A. Davies, J. A. Austin, Jr., M. B. Lagoe, and J. D. Milliman, “Late quaternary sedimentation off New Jersey: New results using 3-D seismic profiles and cores,” Mar. Geol. 108, 323343 (1992).
2.J. A. Goff, B. J. Kraft, L. A. Mayer, S. G. Schock, C. K. Sommerfield, H. C. Olson, S. P. S. Gulick, and S. Nordfjord, “Seabed characterization on the New Jersey middle and outer shelf: Correlatability and spatial variability of seafloor sediment properties,” Mar. Geol. 209, 147172 (2004).
3.S. M. Dediu, W. L. Siegmann, and W. M. Carey, “Statistical analysis of sound transmission results obtained on the New Jersey continental shelf,” J. Acoust. Soc. Am. 122, EL23EL28 (2007).
4.D. P. Knobles, R. A. Koch, L. A. Thompson, and K. C. Focke, “Sound propagation in shallow water and geoacoustic inversion,” J. Acoust. Soc. Am. 113, 205222 (2003).
5.R. A. Koch and D. P. Knobles, “Geo-acoustic inversion from surface ships,” J. Acoust. Soc. Am. 117, 626637 (2005).
6.D. P. Knobles, T. W. Yudichak, R. A. Koch, P. G. Cable, J. H. Miller, and G. Potty, “Inferences of seabed attenuation from distributed acoustic measurements in the East China Sea,” IEEE J. Ocean. Eng. 31, 129144 (2006).
7.M. D. Collins, “A split-step Padé solution for the parabolic equation method,” J. Acoust. Soc. Am. 93, 17361742 (1993).
8.M. A. Biot, “Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range,” J. Acoust. Soc. Am. 26, 168178 (1956).
9.M. A. Biot, “Theory of propagation of elastic waves in a fluid-saturated porous solid II. Higher frequency range,” J. Acoust. Soc. Am. 28, 179191 (1956).
10.R. D. Stoll and T. K. Kan, “Reflection of acoustic waves at a water sediment interface,” J. Acoust. Soc. Am. 70, 149156 (1981).
11.K. L. Williams, D. R. Jackson, E. I. Thorsos, D. J. Tang, and S. G. Schock, “Comparison of sound speed and attenuation measured in a sandy sediment to predictions based on the Biot theory of porous media,” IEEE J. Ocean. Eng. 27, 413428 (2002).
12.S. G. Schock, “A method for estimating the physical and acoustic properties of the sea bed using chirp sonar data,” IEEE J. Ocean. Eng. 29, 12002017 (2004).
13.F. Ingenito, “Measurements of mode attenuation coefficients in shallow water,” J. Acoust. Soc. Am. 53, 858863 (1973).
14.J. X. Zhou, “Normal mode measurements and remote sensing of sea-bottom sound speed and attenuation in shallow water,” J. Acoust. Soc. Am. 78, 10031009 (1985).
15.I. Rozenfeld, W. M. Carey, P. G. Cable, and W. L. Siegmann, “Modeling and analysis of sound transmission in the Strait of Korea,” IEEE J. Ocean. Eng. 26, 809819 (2001).
16.J. D. Holmes, W. M. Carey, S. M. Dediu, and W. L. Siegman, “Nonlinear frequency-dependence attenuation in sandy sediments,” J. Acoust. Soc. Am. 121, EL218EL222 (2007).

Data & Media loading...


Article metrics loading...



Acoustic measurements were made on a sand ridge on the New Jersey continental shelf. Data collected on two L arrays separated by from a single multi-frequency tow suggest small horizontal environmental variability. Values for the sound speed structure of the seabed are extracted by first applying a geo-acoustic inversion method to broadband and narrowband acoustic data from short-range sources. Then, a parabolic equation algorithm is used to properly include the bathymetry and sub-bottom layering. Finally, the frequency dependence of the seabed attenuation is inferred by optimizing the model fit to long-range transmission loss data in the band.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd