Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/asa/journal/jasa/125/4/10.1121/1.3082003
1.
1.L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Course of Theoretical Physics Vol. 6 (Pergamon, New York, 1982), Chap. 1.
2.
2.N. A. Umov, Selected Works (GITTL, Moscow, Leningrad, 1950) (in Russian).
3.
3.R. V. Waterhouse, T. W. Yates, D. Feit, and Y. N. Liu, “Energy streamlines of a sound source,” J. Acoust. Soc. Am. 78, 758762 (1985).
http://dx.doi.org/10.1121/1.392445
4.
4.C. J. Chapman, “Energy paths in edge waves,” J. Fluid Mech. 426, 135154 (2001).
5.
5.R. V. Waterhouse and D. Feit, “Equal-energy streamlines,” J. Acoust. Soc. Am. 80, 681684 (1986).
http://dx.doi.org/10.1121/1.394064
6.
6.R. V. Waterhouse, D. G. Crighton, and J. E. Ffowcs-Williams, “A criterion for an energy vortex in a sound field,” J. Acoust. Soc. Am. 81, 13231326 (1987).
http://dx.doi.org/10.1121/1.394537
7.
7.F. J. Fahy, Sound Intensity, 2nd ed. (E&FN Spon, London, 1995).
8.
8.V. A. Zhuravlev, I. K. Kobozev, and Yu. A. Kravtsov, “Detecting dislocations by measuring the energy flux of an acoustic field,” Sov. Phys. JETP 77, 808814 (1993).
9.
9.C. F. Chien and R. V. Waterhouse, “Singular points of intensity streamlines in two-dimensional sound fields,” J. Acoust. Soc. Am. 101, 705712 (1997).
http://dx.doi.org/10.1121/1.418034
10.
10.D. M. F. Chapman, “Using streamlines to visualize acoustic energy flow across boundaries,” J. Acoust. Soc. Am. 124, 4856 (2008).
http://dx.doi.org/10.1121/1.2931956
11.
11.V. A. Babeshko, E. V. Glushkov, and N. V. Glushkova, “Energy vortices and backward fluxes in elastic waveguides,” Wave Motion 16, 183192 (1992).
http://dx.doi.org/10.1016/0165-2125(92)90027-Y
12.
12.E. Glushkov and N. Glushkova, “Blocking property of energy vortices in elastic waveguides,” J. Acoust. Soc. Am. 102, 13561360 (1997).
http://dx.doi.org/10.1121/1.420054
13.
13.Z. M. Zhang and B. J. Lee, “Lateral shift in photon tunneling studied by the energy streamline method,” Opt. Express 14, 99639970 (2006).
http://dx.doi.org/10.1364/OE.14.009963
14.
14.B. J. Lee, K. Park, and Z. M. Zhang, “Energy pathways in nanoscale thermal radiation,” Appl. Phys. Lett. 91, 153101 (2007).
http://dx.doi.org/10.1063/1.2793688
15.
15.T. L. Foreman, “An exact ray theoretical formulation of the Helmholtz equation,” J. Acoust. Soc. Am. 86, 234246 (1989).
http://dx.doi.org/10.1121/1.398339
16.
16.L. M. Brekhovskikh, Waves in Layered Media (Academic, New York, 1960), pp. 628, 114, and 170.
17.
17.L. M. Brekhovskikh and O. A. Godin, Acoustics of Layered Media I: Plane and Quasi-Plane Waves (Springer-Verlag, Berlin, 1990), pp. 222 and 117.
18.
18.M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University Press, Cambridge, 2001), pp. 59 and 4045.
19.
19.E. A. Skelton and R. V. Waterhouse, “Energy streamlines for a spherical shell scattering plane waves,” J. Acoust. Soc. Am. 80, 14731478 (1986).
http://dx.doi.org/10.1121/1.394402
20.
20.J. Zhang and G. Zhang, “Analysis of acoustic radiation and scattering from a submerged spherical shell by energy streamlines,” J. Acoust. Soc. Am. 88, 19811985 (1990).
http://dx.doi.org/10.1121/1.400222
21.
21.X. D. Xu, H. P. Lee, C. Lu, and J. Y. Guo, “Streamline representation for structural intensity fields,” J. Sound Vib. 280, 449454 (2005).
22.
22.E. V. Glushkov, N. V. Glushkova, and M. V. Golub, “Blocking of traveling waves and energy localization due to the elastodynamic diffraction by a crack,” Acoust. Phys. 52, 259269 (2006).
http://dx.doi.org/10.1134/S1063771006030043
http://aip.metastore.ingenta.com/content/asa/journal/jasa/125/4/10.1121/1.3082003
Loading
/content/asa/journal/jasa/125/4/10.1121/1.3082003
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/jasa/125/4/10.1121/1.3082003
2009-02-25
2016-02-10

Abstract

Energy streamlines provide insights into mechanisms of wave propagation and scattering and are often utilized to visualize wave fields. In contrast to rays, which are essentially an asymptotic, short-wave concept, energy streamlines adequately represent arbitrary wave fields. However, the usefulness of energy streamlines in studies of wave fields is limited by the fact that, unlike rays, no general laws governing energy streamline refraction are known. Here, a simple refraction law is derived for energy streamlines of acoustic and linearly polarized electromagnetic waves. It is shown that analysis of energy streamlines provides a helpful supplementary perspective on wave transmission through interfaces.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/125/4/1.3082003.html;jsessionid=7esped8gaqvm0.x-aip-live-06?itemId=/content/asa/journal/jasa/125/4/10.1121/1.3082003&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd