Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.Chatterjee, M. , and Peng, S. -C. (2008). “Processing F0 with cochlear implants: Modulation frequency discrimination and speech intonation recognition,” Hear. Res. 235, 143156.
2.Fu, Q. -J. (2002). “Temporal processing and speech recognition in cochlear implant users,” NeuroReport 13, 16351639.
3.Galvin, J. J. , and Fu, Q. -J. (2005). “Effects of stimulation rate, mode and level on modulation detection by cochlear implant users,” J. Assoc. Res. Otolaryngol. 6, 269279.
4.Galvin, J. J. , and Fu, Q. -J. (2009). “Influence of stimulation rate and loudness growth on modulation detection and intensity discrimination in cochlear implant users,” Hear. Res. 250, 4654.
5.Jesteadt, W. (1980). “An adaptive procedure for subjective judgements,” Percept. Psychophys. 28, 8588.
6.Lee, J. (1994). “Amplitude modulation rate discrimination with sinusoidal carriers,” J. Acoust. Soc. Am. 96, 21402147.
7.Levitt, H. (1971). “Transformed up-down methods in psychoacoustics,” J. Acoust. Soc. Am. 49, 467477.
8.Luo, X. , Fu, Q. -J. , Wei, C. -G. , and Cao, K. -L. (2008). “Speech recognition and temporal amplitude modulation processing by Mandarin-speaking cochlear implant users,” Ear Hear. 29, 957970.
9.McKay, C. M. , and Henshall, K. R. (2009). “Amplitude modulation and loudness in cochlear implants,” J. Assoc. Res. Otolaryngol. In press.
10.Pfingst, B. E. , Burkholder-Juhasz, R. A. , Xu, L. , and Thompson, C. S. (2008). “Across-site patterns of modulation detection in listeners with cochlear implants,” J. Acoust. Soc. Am. 123, 10541062.
11.Pfingst, B. E. , Xu, L. , and Thompson, C. S. (2007). “Effects of carrier pulse rate and stimulation site on modulation detection by subjects with cochlear implants,” J. Acoust. Soc. Am. 121, 22362246.
12.Plack, C. J. , and Carlyon, R. P. (1995). “Differences in frequency modulation detection and fundamental frequency discrimination between complex tones consisting of resolved and unresolved harmonics,” J. Acoust. Soc. Am. 98, 13551364.
13.Shannon, R. V. (1992). “Temporal modulation transfer functions in patients with cochlear implants,” J. Acoust. Soc. Am. 91, 21562164.
14.Tong, Y. C. , Clark, G. M. , Blamey, P. J. , Busby, P. A. , and Dowell, R. C. (1982). “Psychophysical studies for two multiple-channel cochlear implant patients,” J. Acoust. Soc. Am. 71, 153160.
15.Viemeister, N. F. (1979). “Temporal modulation transfer functions based upon modulation thresholds,” J. Acoust. Soc. Am. 66, 13641380.
16.Viemeister, N. F. , and Wakefield, G. H. (1991). “Temporal integration and multiple looks,” J. Acoust. Soc. Am. 90, 858865.
17.Zeng, F. -G. (2002). “Temporal pitch in electric hearing,” Hear. Res. 174, 101106.

Data & Media loading...


Article metrics loading...



This study investigated temporal integration processes underlying cochlear implant(CI) users’ amplitude modulation processing. Thresholds for modulation detection (AMDTs) and modulation frequency discrimination (AMFDTs) were measured for 50-, 100-, and 200-Hz modulation frequencies with stimulus durations from 50 to 400 ms in eight adult CI users. The results showed significant interactions between modulation frequency and stimulus duration for AMDTs and AMFDTs. The data suggest that temporal integration limits CI users’ sensitivity to low temporal pitch over short durations, and that temporal integration over longer durations may not enhance CI users’ sensitivity to high temporal pitch.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd