1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
A proposed neural mechanism underlying auditory continuity illusions
Rent:
Rent this article for
Access full text Article
/content/asa/journal/jasa/128/1/10.1121/1.3443568
1.
1.Bregman, A. (1990). Auditory Scene Analysis (MIT, Cambridge, MA).
2.
2.Bregman, A. S. , Colantonio, C. , and Ahad, P. A. (1999). “Is a common grouping mechanism involved in the phenomena of illusory continuity and stream segregation?,” Percept. Psychophys. 61, 195205.
3.
3.Bregman, A. S. , and Dannenbring, G. L. (1977). “Auditory continuity and amplitude edges,” Can. J. Psychol. 31, 151159.
http://dx.doi.org/10.1037/h0081658
4.
4.Buonomano, D. V. , and Maass, W. (2009). “State-dependent computations: Spatiotemporal processing in cortical networks,” Nat. Rev. Neurosci. 10, 113125.
http://dx.doi.org/10.1038/nrn2558
5.
5.Carlyon, R. P. , Deeks, J. M. , Shtyrov, Y. , Grahn, J. , Gockel, H. E. , Hauk, O. , and Pulvermüller, F. (2009). “Changes in the perceived duration of a narrowband sound induced by a preceding stimulus,” J. Exp. Psychol. Hum. Percept. Perform. 35, 18981912.
http://dx.doi.org/10.1037/a0015018
6.
6.Eggermont, J. J. (1995). “Neural correlates of gap detection and auditory fusion in cat auditory cortex,” NeuroReport 6, 16451648.
http://dx.doi.org/10.1097/00001756-199508000-00014
7.
7.Elhilali, M. , Ma, L. , Micheyl, C. , Oxenham, A. J. , and Shamma, S. A. (2009). “Temporal coherence in the perceptual organization and cortical representation of auditory scenes,” Neuron 61, 317329.
http://dx.doi.org/10.1016/j.neuron.2008.12.005
8.
8.Grossberg, S. , Govindarajan, K. K. , Wyse, L. L. , and Cohen, M. A. (2004). “ARTSTREAM: A neural network model of auditory scene analysis and source segregation,” Neural Networks 17, 511536.
http://dx.doi.org/10.1016/j.neunet.2003.10.002
9.
9.Heinrich, A. , Carlyon, R. P. , Davis, M. H. , and Johnsrude, I. S. (2008). “Illusory vowels resulting from perceptual continuity: A functional magnetic resonance imaging study,” J. Cogn. Neurosci. 20, 17371752.
http://dx.doi.org/10.1162/jocn.2008.20069
10.
10.Husain, F. T. , and Horwitz, B. (2006). “Experimental-neuromodeling framework for understanding auditory object processing: Integrating data across multiple scales,” J. Physiol. Paris 100, 133141.
http://dx.doi.org/10.1016/j.jphysparis.2006.09.006
11.
11.Husain, F. T. , Lozito, T. P. , Ulloa, A. , and Horwitz, B. (2005). “Investigating the neural basis of the auditory continuity illusion,” J. Cogn. Neurosci. 17, 12751292.
http://dx.doi.org/10.1162/0898929055002472
12.
12.Liu, T. , Slotnick, S. D. , and Yantis, S. (2004). “Human MT + mediates perceptual filling-in during apparent motion,” Neuroimage 21, 17721780.
http://dx.doi.org/10.1016/j.neuroimage.2003.12.025
13.
13.Lyzenga, J. , Carlyon, R. P. , and Moore, B. C. J. (2005). “Dynamic aspects of the continuity illusion: perception of level and of the depth, rate, and phase of modulation,” Hear. Res. 210, 3041.
http://dx.doi.org/10.1016/j.heares.2005.07.002
14.
14.Palombi, P. S. , Backoff, P. M. , and Caspary, D. M. (1994). “Paired tone facilitation in dorsal cochlear nucleus neurons: A short-term potentiation model testable in vivo,” Hear. Res. 75, 175183.
http://dx.doi.org/10.1016/0378-5955(94)90068-X
15.
15.Petkov, C. I. , O’Connor, K. N. , and Sutter, M. L. (2007). “Encoding of illusory continuity in primary auditory cortex,” Neuron 54, 153165.
http://dx.doi.org/10.1016/j.neuron.2007.02.031
16.
16.Pressnitzer, D. , Sayles, M. , Micheyl, C. , and Winter, I. M. (2008). “Perceptual organization of sound begins in the auditory periphery,” Curr. Biol. 18, 11241128.
http://dx.doi.org/10.1016/j.cub.2008.06.053
17.
17.Riecke, L. , Orstal, A. J. V. , and Formisano, E. (2008) “The auditory continuity illusion: A parametric investigation and filter model,” Percept. Psychophys. 70, 112.
18.
18.Riecke, L. , Mendelsohn, D. , Schreiner, C. , and Formisano, E. (2009). “The continuity illusion adapts to the auditory scene,” Hear. Res. 247, 7177.
http://dx.doi.org/10.1016/j.heares.2008.10.006
19.
19.Riecke, L. , Opstal, A. J. V. , Goebel, R. , and Formisano, E. (2007). “Hearing illusory sounds in noise: Sensory-perceptual transformations in primary auditory cortex,” J. Neurosci. 27, 1268412689.
http://dx.doi.org/10.1523/JNEUROSCI.2713-07.2007
20.
20.Ross, B. , and Pantev, C. (2004). “Auditory steady-state responses reveal amplitude modulation gap detection thresholds,” J. Acoust. Soc. Am. 115, 21932206.
http://dx.doi.org/10.1121/1.1694996
21.
21.Steinschneider, M. , Volkov, I. O. , Noh, M. D. , Garell, P. C. , and Howard, M. A. , III (1999). “Temporal encoding of the voice onset time phonetic parameter by field potentials recorded directly from human auditory cortex,” J. Neurophysiol. 82, 23462357.
22.
22.Sugita, Y. (1997). “Neuronal correlates of auditory induction in the cat cortex,” NeuroReport 8, 11551159.
http://dx.doi.org/10.1097/00001756-199703240-00019
23.
23.Thurlow, W. R. (1957). “An auditory figure-ground effect,” Am. J. Psychol. 70, 653654.
http://dx.doi.org/10.2307/1419466
24.
24.Thurlow, W. R. , and Elfner, L. E. (1959). “Continuity effects with alternately sounding tones,” J. Acoust. Soc. Am. 31, 13371339.
http://dx.doi.org/10.1121/1.1907631
25.
25.Tougas, Y. , and Bregman, A. S. (1990). “Auditory streaming and the continuity illusion,” Percept. Psychophys. 47, 121126.
26.
26.Ulanovsky, N. , Las, L. , Farkas, D. , and Nelken, I. (2004). “Multiple time scales of adaptation in auditory cortex neurons,” J. Neurosci. 24, 1044010453.
http://dx.doi.org/10.1523/JNEUROSCI.1905-04.2004
27.
27.Warren, R. M. (1970). “Perceptual restoration of missing speech sounds,” Science 167, 392303.
28.
28.Warren, R. M. , Obusek, C. J. , and Ackroff, J. M. (1972). “Auditory induction: Perceptual synthesis of absent sounds,” Science, 176, 11491151
29.
29.Warren, R. (1999). Auditory Perception: A New Analysis and Synthesis (Cambridge University Press, Cambridge).
30.
30.Zucker, R. S. , and Regehr, W. G. (2002). “Short-term synaptic plasticity,” Annu. Rev. Physiol. 64, 355405.
http://dx.doi.org/10.1146/annurev.physiol.64.092501.114547
http://aip.metastore.ingenta.com/content/asa/journal/jasa/128/1/10.1121/1.3443568
Loading
/content/asa/journal/jasa/128/1/10.1121/1.3443568
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/jasa/128/1/10.1121/1.3443568
2010-06-24
2014-11-28

Abstract

A numerical thought experiment was conducted to assess whether stimulus-specific, short-term changes in auditory neural responsiveness could explain the formation of auditory objects underlying the auditory continuity illusion. A tonotopic, two-layer feedforward network model with one time constant for synaptic weight augmentation based on firing rate, and an independent time constant for synaptic weight decay was presented with classical continuity illusion stimuli. The results suggest that the continuity illusion could, in principle, be explained by basic, duration-dependent auditory circuit behavior, which could emerge at either early or later stages of processing.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/128/1/1.3443568.html;jsessionid=71eq7aiqmjq91.x-aip-live-02?itemId=/content/asa/journal/jasa/128/1/10.1121/1.3443568&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A proposed neural mechanism underlying auditory continuity illusions
http://aip.metastore.ingenta.com/content/asa/journal/jasa/128/1/10.1121/1.3443568
10.1121/1.3443568
SEARCH_EXPAND_ITEM