Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/asa/journal/jasa/129/1/10.1121/1.3526379
1.
1. J. F. Claerbout, “Toward a unified theory of reflector mapping,” Geophysics 36(3), 467481 (1971).
2.
2. E. Baysal, D. Kosloff, and J. W. C. Sherwood, “Reverse time migration,” Geophysics 48(11), 15141524 (1983).
3.
3. S. A. Levin, “Principle of reverse-time migration,” Geophysics 49(5), 581583 (1984).
4.
4. W. -F. Chang and G. A. McMechan, “Reverse-time migration of offset vertical seismic profiling data using the excitation-time imaging condition,” Geophysics 51(1), 6784 (1986).
5.
5. W. -F. Chang and G. A. McMechan, “Elastic reverse-time migration,” Geophysics 52(10), 13651375 (1987).
6.
6. W. -F. Chang and G. A. McMechan, “3-D acoustic prestack reverse-time migration,” Geophys. Prospect. 38(7), 737755 (1990).
7.
7. W. -F. Chang and G. A. McMechan, “3-D elastic prestack, reverse-time depth migration,” Geophysics 59(4), 597609 (1994).
8.
8. R. Sun and G. A. McMechan, “Scalar reverse-time depth migration of prestack elastic seismic data,” Geophysics 66(5), 15191527 (2001).
9.
9. S. Chattopadhyay and G. A. McMechan, “Imaging conditions for prestack reverse-time migration,” Geophysics 73(3), S81S89 (2008).
10.
10. M. Fink, “Time reversed acoustics,” Phys. Today 50(3), 3440 (1997).
11.
11. B. E. Anderson, M. Griffa, C. Larmat, T. J. Ulrich, and P. A. Johnson, “Time reversal,” Acoust. Today 4(1), 516 (2008).
12.
12. C. Larmat, R. A. Guyer, and P. A. Johnson, “Time-reversal methods in geophysics,” Phys. Today 63(8), 3135 (2010).
13.
13. A. B. Weglein, “Multiple attenuation: An overview of recent advances and the road ahead,” The Leading Edge 18, 4044 (1999).
14.
14. A. Guitton, B. Kaelin, and B. Biondi, “Least-squares attenuation of reverse-time migration artifacts,” Geophysics 72(1), S19S23 (2007).
15.
15. A. E. Malcolm, B. Ursin, and M. V. de Hoop, “Seismic imaging and illumination with internal multiples,” Geophys. J. Int. 176, 847864 (2009).
16.
16. X. Lin and F. G. Yuan, “Damage detection of a plate using migration technique,” J. Intell. Mater. Syst. Struct. 12(7), 469482 (2001).
17.
17. X. Lin and F. G. Yuan, “Detection of multiple damages by prestack reverse-time migration,” AIAA J. 39(11), 22062215 (2001).
18.
18. X. Lin and F. G. Yuan, “Experimental study applying a migration technique in structural health monitoring,” Struct. Health Monit. Int. J. 4(4), 341353 (2005).
19.
19. J. -L. Robert and M. Fink, “Spatio-temporal invariants of the time reversal operator,” J. Acoust. Soc. Am. 127(5), 29042912 (2010).
20.
20. J. -L. Robert and M. Fink, “The prolate spheroidal wave functions as invariants of the time reversal operator for an extended scatterer in the Fraunhofer approximation,” J. Acoust. Soc. Am. 125(1), 218226 (2009).
21.
21. T. J. Ulrich, P. A. Johnson, and A. Sutin, “Imaging nonlinear scatterers applying the time reversal mirror,” J. Acoust. Soc. Am. 119(3), 15141518 (2006).
22.
22. T. J. Ulrich, P. A. Johnson, and R. A. Guyer, “Interaction dynamics of elastic waves with a complex nonlinear scatterer through the use of a time reversal mirror,” Phys. Rev. Lett. 98(10), 104301 (2007).
23.
23. T. J. Ulrich, A. M. Sutin, T. Claytor, P. Papin, P. -Y. Le Bas, and J. A. TenCate, “The time reversed elastic nonlinearity diagnostic applied to evaluation of diffusion bonds,” Appl. Phys. Lett. 93(15), 151914 (2008).
24.
24. T. J. Ulrich, K. Van Den Abeele, P. -Y. Le Bas, M. Griffa, B. E. Anderson, and R. A. Guyer, “Three component time reversal: Focusing vector components using a scalar source,” J. Appl. Phys. 106(11), 113504 (2009).
25.
25. M. Griffa, B. E. Anderson, R. A. Guyer, T. J. Ulrich, and P. A. Johnson, “Investigation of the robustness of time reversal acoustics in solid media through the reconstruction of temporally symmetric sources,” J. Phys. D: Appl. Phys. 41, 085415 (2008).
26.
26. M. Scalerandi, A. S. Gliozzi, B. E. Anderson, M. Griffa, P. A. Johnson, and T. J. Ulrich, “Selective source reduction to identify masked sources using time reversal acoustics,” J. Phys. D: Appl. Phys. 41, 155504 (2008).
27.
27. B. E. Anderson, T. J. Ulrich, M. Griffa, P. -Y. Le Bas, M. Scalerandi, A. S. Gliozzi, and P. A. Johnson, “Experimentally identifying masked sources applying time reversal with the selective source reduction method,” J. Appl. Phys. 105(8), 083506 (2009).
28.
28. B. E. Anderson, R. A. Guyer, T. J. Ulrich, and P. A. Johnson, “Time reversal of continuous-wave, steady-state signals in elastic media,” Appl. Phys. Lett. 94(11), 111908 (2009).
29.
29. D. Mennitt and M. Johnson, “Multiple-array passive acoustic source localization in urban environments,” J. Acoust. Soc. Am. 127(5), 29322942 (2010).
30.
30. J. Sadler, K. Shapoori, and E. Malyarenko, “Locating an acoustic point source scattered by a skull phantom via time reversal matched filtering,” J. Acoust. Soc. Am. 128(4), 18121822 (2010).
31.
31. P. Sava and S. Hill, “Overview and classification of wave field seismic imaging methods,” The Leading Edge 28, 170183 (2009).
32.
32. F. Fahy and P. Gardonio, Sound and Structural Vibration, Radiation, Transmission and Response, 2nd ed. (Academic, Oxford, 2007), Section 1.7, pp. 2324.
http://aip.metastore.ingenta.com/content/asa/journal/jasa/129/1/10.1121/1.3526379
Loading
/content/asa/journal/jasa/129/1/10.1121/1.3526379
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/jasa/129/1/10.1121/1.3526379
2011-01-18
2016-12-08

Abstract

Reverse time migration (RTM) is a commonly employed imaging technique in seismic applications (e.g., to image reservoirs of oil). Its standard implementation cannot account for multiple scattering/reverberation. For this reason it has not yet found application in nondestructive evaluation(NDE). This paper applies RTM imaging to NDE applications in bounded samples, where reverberation is always present. This paper presents a fully experimental implementation of RTM, whereas in seismic applications, only part of the procedure is done experimentally. A modified RTM imaging condition is able to localize scatterers and locations of disbonding. Experiments are conducted on aluminum samples with controlled scatterers.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/129/1/1.3526379.html;jsessionid=XgHmcMeCrcNGnYlKAIVNxqnW.x-aip-live-02?itemId=/content/asa/journal/jasa/129/1/10.1121/1.3526379&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=asadl.org/jasa/129/1/10.1121/1.3526379&pageURL=http://scitation.aip.org/content/asa/journal/jasa/129/1/10.1121/1.3526379'
Right1,Right2,Right3,