Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/asa/journal/jasa/129/3/10.1121/1.3533919
1.
1. J. L. Flanagan, Speech Analysis, Synthesis, and Perception, 2nd ed. (Springer-Verlag, New York, 1972), pp. 923.
2.
2. C. Zhang, W. Zhao, S. H. Frankel, and L. Mongeau, “Computational aeroacoustics of phonation, Part II: Effects of flow parameters and ventricular folds,” J. Acoust. Soc. Am. 112, 21472154 (2002).
http://dx.doi.org/10.1121/1.1506694
3.
3. M. H. Krane, “Aeroacoustic production of low-frequency unvoiced speech sounds,” J. Acoust. Soc. Am. 118, 410427 (2005).
http://dx.doi.org/10.1121/1.1862251
4.
4. G. Fant, Acoustic Theory of Speech Production (Mouton and Co. N. V., The Hague, 1960), pp. 1579.
5.
5. Z. Zhang, L. Mongeau, and S. H. Frankel, “Experimental verification of the quasi-steady approximation for aerodynamic sound generation by pulsating jet in tubes,” J. Acoust. Soc. Am. 112, 16521663 (2002).
http://dx.doi.org/10.1121/1.1506159
6.
6. W. Zhao, C. Zhang, S. H. Frankel, and L. Mongeau, “Computational aeroacoustics of phonation, Part I: Computational methods and sound generation mechanisms,” J. Acoust. Soc. Am. 112, 21342146 (2002).
http://dx.doi.org/10.1121/1.1506693
7.
7. Z. Zhang, L. Mongeau, S. H. Frankel, S. Thomson, and J. B. Park, “Sound generation by steady flow through glottis-shaped orifices,” J. Acoust. Soc. Am. 116, 17201728 (2004).
http://dx.doi.org/10.1121/1.1779331
8.
8. H. M. Teager, “Some observations on oral air flow during phonation,” IEEE Trans. Acoust., Speech, Signal Process. 28, 599601 (1980).
http://dx.doi.org/10.1109/TASSP.1980.1163453
9.
9. J. F. Kaiser, “Some observations on vocal tract operation from a fluid flow point of view,” in Vocal Fold Physiology: Biomechanics, Acoustics, and Phonatory Control, edited by I. R. Ititze and R. C. Scherer (The Denver Center for the Performing Arts, Denver, CO, 1983), pp. 358386.
10.
10. H. M. Teager and S. M. Teager, “The effects of separated air flow on vocalization,” in Vocal Fold Physiology, edited by D. M. Bless and J. H. Abbs (College-Hill, San Diego, CA, 1983), pp. 124143.
11.
11. H. M. Teager and S. M. Teager, “Active fluid dynamic voice production models, or there is a unicorn in the garden,” in Vocal Fold Physiology: Biomechanics, Acoustics, and Phonatory Control, edited by I. R. Titze and R. C. Scherer [Note: copyright date is 1983, printing date is 1985] (The Denver Center for the Performing Arts, Denver, CO, 1983), pp. 387401.
12.
12. J. Suh and S. Frankel, “Numerical simulation of turbulence transition and sound radiation for flow through a rigid glottal model,” J. Acoust. Soc. Am. 121, 37283739 (2007).
http://dx.doi.org/10.1121/1.2723646
13.
13. F. Alipour and R. C. Scherer, “Pulsatile airflow during phonation: An excised larynx model,” J. Acoust. Soc. Am. 97, 12411248 (1995).
http://dx.doi.org/10.1121/1.412233
14.
14. S. M. Khosla, S. Murugappan, E. J. Gutmark, and R. C. Scherer, “Vortical flow field during phonation in an excised canine larynx model,” Ann. Otol. Rhinol. Laryngol. 116, 217228 (2007).
15.
15. R. C. Scherer, D. Shinwari, K. J. DeWitt, C. Zhang, B. R. Kucinschi, and A. A. Afjeh, “Intraglottal pressure profiles for a symmetric and oblique glottis with a divergence angle of 10 degrees,” J. Acoust. Soc. Am. 109, 16161630 (2001).
http://dx.doi.org/10.1121/1.1333420
16.
16. D. Shinwari, R. C. Scherer, K. J. DeWitt, and A. A. Afjeh, “Flow visualization and pressure distributions in a model of the glottis with a symmetric and oblique divergent angle of 10 degrees,” J. Acoust. Soc. Am. 113, 487497 (2003).
http://dx.doi.org/10.1121/1.1526468
17.
17. M. Triep, C. Brücker, and W. Schroder, “High-speed piv measurements of the flow downstream of a dynamic mechanical model of the human vocal folds,” Exp. Fluids 39, 232245 (2005).
http://dx.doi.org/10.1007/s00348-005-1015-3
18.
18. J. Neubauer, Z. Zhang, R. Miraghie, and D. Berry, “Coherent structures of the near field flow in a self-oscillating physical model of the vocal folds,” J. Acoust. Soc. Am. 121, 11021118 (2007).
http://dx.doi.org/10.1121/1.2409488
19.
19. B. D. Erath and M. W. Plesniak, “An investigation of bimodal jet trajectory in flow through scaled models of the human vocal folds,” Exp. Fluids 40, 683696 (2006).
http://dx.doi.org/10.1007/s00348-006-0106-0
20.
20. B. D. Erath and M. W. Plesniak, “The occurrence of the Coanda effect in pulsatile flow through static models of the human vocal folds,” J. Acoust. Soc. Am. 120, 10001011 (2006).
http://dx.doi.org/10.1121/1.2213522
21.
21. B. D. Erath and M. W. Plesniak, “An investigation of jet trajectory in flow through scaled vocal fold models with asymmetrical glottal passages,” Exp. Fluids 41, 735748 (2006).
http://dx.doi.org/10.1007/s00348-006-0196-8
22.
22. B. D. Erath and M. W. Plesniak, “An investigation of asymmetric flow features in a scaled-up model of the human vocal folds,” Exp. Fluids 49, 131146 (2010).
http://dx.doi.org/10.1007/s00348-009-0809-0
23.
23. J. S. Drechsel and S. L. Thomson, “Influence of supraglottal structures on the glottal jet exiting a two-layer synthetic, self-oscillating vocal fold model,” J. Acoust. Soc. Am. 123, 44344445 (2008).
http://dx.doi.org/10.1121/1.2897040
24.
24. Z. Zheng, S. Bielamowicz, H. Luo, and R. Mittal, “Computational study of the effect of false vocal folds on glottal flow and vocal fold vibration during phonation,” Ann. Biomed. Eng. 37, 625642 (2009).
http://dx.doi.org/10.1007/s10439-008-9630-9
25.
25. D. S. Cooper, “The laryngeal mucosa in voice production,” Ear Nose Throat J. 67, 332352 (1988).
26.
26. B. D. Erath and M. W. Plesniak, “Viscous flow features in scaled-up physical models of normal and pathological phonation,” Int. J. Heat Fluid Flow 31, 468481 (2010).
http://dx.doi.org/10.1016/j.ijheatfluidflow.2010.02.014
27.
27. J. L. Lumley, “The structure of inhomogeneous turbulent flows,” in Proceedings of the International Colloqium on the Fine Scale Structure of the Atmosphere and Its Influence on Radio Wave Propagation, edited by A. M. Yaglam and V. I. Tatarsky (Doklady Akademii Nauk SSSR, Moscow, Nauka, 1967), pp. 215241.
28.
28. G. Berkooz, P. Holmes, and J. Lumley, “The proper orthogonal decomposition in the analysis of turbulent flows,” Annu. Rev. Fluid Mech. 25, 539575 (1993).
http://dx.doi.org/10.1146/annurev.fl.25.010193.002543
29.
29. P. Holmes, J. L. Lumley, and G. Berkooz, Turbulence, Coherent Structures, and Symmetry (Cambridge University Press, 1996), pp. 86128.
30.
30. A. Chatterjee, “An introduction to the proper orthogonal decomposition,” Curr. Sci. 78, 808817 (2000).
31.
31. D. Rockwell and E. Naudasher, “Self sustained oscillations of impinging free shear layers,” Annu. Rev. Fluid Mech. 11, 6794 (1979).
http://dx.doi.org/10.1146/annurev.fl.11.010179.000435
32.
32. W. Cherdron, F. Durst, and H. Whitelaw, “Asymmetric flows and instabilities in symmetric ducts with sudden expansions,” J. Fluid Mech. 84, 1331 (1978).
http://dx.doi.org/10.1017/S0022112078000026
33.
33. A. Acrivos and M. Schrader, “Steady flow in a sudden expansion at high Reynolds number,” Phys. Fluids 25(6), 923 (1982).
34.
34. F. Durst, J. C. F. Pereira, and C. Tropea, “The plane symmetric sudden-expansion flow at low Reynolds number,” J. Fluid Mech. 248, 567581 (1993).
http://dx.doi.org/10.1017/S0022112093000916
http://aip.metastore.ingenta.com/content/asa/journal/jasa/129/3/10.1121/1.3533919
Loading
/content/asa/journal/jasa/129/3/10.1121/1.3533919
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/jasa/129/3/10.1121/1.3533919
2011-03-02
2016-12-08

Abstract

Supraglottal jet variability was investigated in a scaled-up flow facility incorporating driven vocal fold models with and without wall rotation. Principle component analysis was performed on the experimental supraglottal flow fields to ascertain the roll of glottal wall motion on the development of the supraglottal jet. It is shown that intraglottal flow asymmetries that develop due to wall rotation are not the primary mechanism for generating large-scale cycle-to-cycle deflection of the supraglottal jet. However, wall rotation does decrease the energy content of the first mode, redistributing it to the higher modes through an increase in unstructured flow variability.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/129/3/1.3533919.html;jsessionid=bMjc6Lj83Bq_okceYHxZoD5Q.x-aip-live-06?itemId=/content/asa/journal/jasa/129/3/10.1121/1.3533919&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=asadl.org/jasa/129/3/10.1121/1.3533919&pageURL=http://scitation.aip.org/content/asa/journal/jasa/129/3/10.1121/1.3533919'
Right1,Right2,Right3,