1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Effect of bubble shell nonlinearity on ultrasound nonlinear propagation through microbubble populations
Rent:
Rent this article for
Access full text Article
/content/asa/journal/jasa/129/3/10.1121/1.3544677
1.
1. de Jong, N. , Emmer, M. , Chin, C. T. , Bouakaz, A. , Mastik, F. , Lohse, D. , and Versluis, M. (2007). “ ‘Compression-only’ behavior of phospholipid-coated contrast bubbles,” Ultrasound Med. Biol. 33(4), 653656.
http://dx.doi.org/10.1016/j.ultrasmedbio.2006.09.016
2.
2. Frinking, P. , Gaud, E. , and Arditi, M. (2010). “Compression-only behaviour and subharmonic scattering of phospholipid-shell microbubbles,” in Proceedings of the 14th European Symposium on Ultrasound Contrast Imaging, Rotterdam, The Netherlands, pp. 8087.
3.
3. Gorce, J.-M. , Arditi, M. , and Schneider, M. (2000). “Influence of bubble size distribution on the echogenicity of ultrasound contrast agents—A Study of SonoVueTM,” Invest. Radiol. 35(11), 661671.
http://dx.doi.org/10.1097/00004424-200011000-00003
4.
4. Grootens, J. , Mischi, M. , Böhmer, M. , Korsten, H. H. M. , and Aarts, R. M. (2009). “Modeling of ultrasound propagation through contrast agents,” in IFMBE Proceedings 2009, Vol. 22 (Springer, Berlin), pp. 440443.
5.
5. Hamilton, M. F. , and Blackstock, D. T. (1998). Nonlinear Acoustics, Theory and Applications (Academic Press, New York), pp. 167175.
6.
6. Hibbs, K. , Mari, J. M. , Stride, E. , Eckersley, R. J. , Noble, A. , and Tang, M. X. (2007). “Nonlinear propagation of ultrasound through microbubble clouds: A novel numerical implementation,” in 2007 IEEE Ultrasonics Symposium Proceedings, V1-6 Book Series: Ultrasonics Symposium, pp. 19972000.
7.
7. Leighton, T. G. , Meers, S. D. , and White, P. R. (2004). “Propagation through nonlinear time-dependent bubble clouds and the estimation of bubble populations from measured acoustic characteristics,” Proc. R. Soc. London, Ser. A 460(2049), 25212550.
8.
8. Marmottant, P. , van der Meer, S. , Emmer, M. , Versluis, M. , de Jong, N. , Hilgenfeldt, S. , and Lohse, D. (2005). “A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture,” J. Acoust. Soc. Am. 118(6), 34993505.
http://dx.doi.org/10.1121/1.2109427
9.
9. Stride, E. (2005). “Characterisation and design of microbubble-based contrast agents suitable for diagnostic imaging,” in Contrast Media in Ultrasonography: Basic Principles and Clinical Applications, edited by E. Quaia (Springer-Verlag, Berlin), Chap. 3, pp. 3142.
10.
10. Stride, E. (2008). “The influence of surface adsorption on bubble dynamics,” Philos. Trans. R. Soc. A 366, 21032115.
http://dx.doi.org/10.1098/rsta.2008.0001
11.
11. Stride, E. , and Saffari, N. (2005). “Investigating the significance of multiple scattering in ultrasound contrast agent particle populations,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(12), 23322345.
http://dx.doi.org/10.1109/TUFFC.2005.1563278
12.
12. Stride, E. , Tang, M. X. , and Eckersley, R. J. (2009). “Physical phenomena affecting quantitative imaging of ultrasound contrast agents,” Appl. Acoust. 70(10), 13521362.
http://dx.doi.org/10.1016/j.apacoust.2008.10.003
13.
13. Tang, M. X. , and Eckersley, R. J. (2006). “Nonlinear propagation of ultrasound through microbubble contrast agents and implications for imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 24062415.
http://dx.doi.org/10.1109/TUFFC.2006.189
14.
14. Tang, M. X. , Kamiyama, N. , and Eckersley, R. J. (2010). “Effects of nonlinear propagation in Ultrasound Contrast Agent imaging,” Ultrasound Med. Biol. 36(3), 459466.
http://dx.doi.org/10.1016/j.ultrasmedbio.2009.11.011
15.
15. Yu, H. , Jang, H. J. , Kim, T. K. , Khalili, K. , Williams, R. , Lueck, G. , Hudson, J. , and Burns, P. N. (2010). “Pseudoenhancement within the local ablation zone of hepatic tumors due to a nonlinear artefact on contrast-enhanced ultrasound,” Am. J. Roentgenol. 194(3), 653659.
http://dx.doi.org/10.2214/AJR.09.3109
http://aip.metastore.ingenta.com/content/asa/journal/jasa/129/3/10.1121/1.3544677
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(Color online) Frequency spectrum of the propagated pulses: experimental data, original and revised model results.

Image of FIG. 2.

Click to view

FIG. 2.

Frequency spectrum evolution of one propagating pulse (a) and PI signal of the propagating pulse pair (b) over the 6 cm within the bubble solution. Note that both color bars are in decibel scale.

Image of FIG. 3.

Click to view

FIG. 3.

(Color online) Spectrum of the propagated pulse when different buckling radii are used. The buckling radii are (a) 1, (b) 1.75, (c) 2, and (d) 3 μm, respectively.

Loading

Article metrics loading...

/content/asa/journal/jasa/129/3/10.1121/1.3544677
2011-03-04
2014-04-17

Abstract

Nonlinear propagation of ultrasound through microbubble populations can generate artifacts and reduce contrast to tissue ratio in ultrasound imaging. The existing propagation model, which underestimates harmonic generation by an order of magnitude, was revised by incorporating a nonlinear constitutive equation for the coating into the description of the microbubble dynamics. Significantly better agreement with experiments was obtained, indicating that coating nonlinearity represents an important contribution to nonlinear propagation of ultrasound in microbubble populations. The results were found to be sensitive to the parameters characterizing the coating nonlinearity and thus accurate measurement of these parameters is required for accurate quantitative predictions.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/129/3/1.3544677.html;jsessionid=anta28q08as7a.x-aip-live-02?itemId=/content/asa/journal/jasa/129/3/10.1121/1.3544677&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Effect of bubble shell nonlinearity on ultrasound nonlinear propagation through microbubble populations
http://aip.metastore.ingenta.com/content/asa/journal/jasa/129/3/10.1121/1.3544677
10.1121/1.3544677
SEARCH_EXPAND_ITEM