1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/asa/journal/jasa/130/4/10.1121/1.3638926
1.
1. P. A. Johnson, “New wave in acoustic testing,” Mater. World 7, 544546 (1999).
2.
2. L. A. Ostrovsky and P. A. Johnson, “Dynamic nonlinear elasticity in geomaterials,” Riv. Nuovo Cimento 24, 146 (2001).
3.
3. M. Fink, “Time reversed acoustics,” Phys. Today 50(3), 3440 (1997).
http://dx.doi.org/10.1063/1.881692
4.
4. B. E. Anderson, M. Griffa, C. Larmat, T. J. Ulrich, and P. A. Johnson, “Time reversal,” Acoust. Today 4, 515 (2008).
http://dx.doi.org/10.1121/1.2961165
5.
5. J. L. Thomas, F. Wu, and M. Fink, “Time reversal focusing applied to lithotripsy,” Ultrason. Imaging 18, 106121 (1996).
http://dx.doi.org/10.1006/uimg.1996.0006
6.
6. D. Rouseff, D. R. Jackson, W. L. J. Fox, C. D. Jones, J. A. Ritcey, and D. R. Dowling, “Underwater acoustic communication by passive-phase conjugation: Theory and experimental results,” IEEE J. Ocean. Eng. 26, 821831 (2001).
http://dx.doi.org/10.1109/48.972122
7.
7. G. F. Edelmann, T. Akal, W. S. Hodgkiss, S. Kim, W. A. Kuperman, and H. C. Song, “An initial demonstration of underwater acoustic communication using time reversal,” IEEE J. Ocean. Eng. 27, 602609 (2002).
http://dx.doi.org/10.1109/JOE.2002.1040942
8.
8. T. J. Ulrich, P. A. Johnson, and R. A. Guyer, “Interaction dynamics of elastic waves with a complex nonlinear scatterer through the use of a time reversal mirror,” Phys. Rev. Lett. 98, 104301 (2007).
9.
9. M. Griffa, B. E. Anderson, R. A. Guyer, T. J. Ulrich, and P. A. Johnson, “Investigation of the robustness of time reversal acoustics in solid media through the reconstruction of temporally symmetric sources,” J. Phys. D: Appl. Phys. 41, 085415 (2008).
http://dx.doi.org/10.1088/0022-3727/41/8/085415
10.
10. B. E. Anderson, T. J. Ulrich, P. Y. Le Bas, C. Larmat, P. A Johnson, R. A. Guyer, and M. Griffa, . “Energy current imaging method for time reversal in elastic media,” Appl. Phys. Lett. 95, 021907 (2009).
http://aip.metastore.ingenta.com/content/asa/journal/jasa/130/4/10.1121/1.3638926
Loading
/content/asa/journal/jasa/130/4/10.1121/1.3638926
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/jasa/130/4/10.1121/1.3638926
2011-09-15
2015-09-01

Abstract

A nonlinear scatterer is simulated in the body of a sample and demonstrates a technique to locate and define the elastic nature of the scatterer. Using the principle of time reversal, elastic wave energy is focused at the interface between blocks of optical grade glass and aluminum. Focusing of energy at the interface creates nonlinear wave scattering that can be detected on the sample perimeter with time-reversal mirror elements. The nonlinearly generatedscattered signal is bandpass filtered about the nonlinearly generated components, time reversed and broadcast from the same mirror elements, and the signal is focused at the scattering location on the interface.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/130/4/1.3638926.html;jsessionid=1rivjfjqn1vwj.x-aip-live-03?itemId=/content/asa/journal/jasa/130/4/10.1121/1.3638926&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Probing the interior of a solid volume with time reversal and nonlinear elastic wave spectroscopy
http://aip.metastore.ingenta.com/content/asa/journal/jasa/130/4/10.1121/1.3638926
10.1121/1.3638926
SEARCH_EXPAND_ITEM