1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
Natural frequencies of two bubbles in a compliant tube: Analytical, simulation, and experimental results
Rent:
Rent this article for
USD
10.1121/1.3626135
/content/asa/journal/jasa/130/5/10.1121/1.3626135
http://aip.metastore.ingenta.com/content/asa/journal/jasa/130/5/10.1121/1.3626135
View: Figures

Figures

Image of FIG. 1.
FIG. 1.

(a) Schematic diagram for two bubbles in a tube, showing bubble radii, R 1, R 2, bubble positions with respect to center of the tube, z 1, z 2, tube inner radius, r tube, tube thickness, t tube, and tube length, L. (b) Each spherical bubble is replaced with a cylindrical body of equal volume and radius equal to tube inner radius, so that the width of the ith cylindrical bubble is

Image of FIG. 2.
FIG. 2.

(a) Schematic diagram showing five degrees of freedom for the two bubbles in a compliant tube. (b) Schematic diagram of a tapered tube of angle θ with a single bubble positioned in the middle of the tube, as simulated with comsol Multiphysics.

Image of FIG. 3.
FIG. 3.

(Color online) A stainless steel cylindrical exposure chamber (25.5 cm in diameter and 35.5 cm in height) is filled with degassed, deionized water at room temperature, with a shaker, mounted on the bottom, controlled by a digital signal generator and a power amplifier. A tube was clamped horizontally inside the tank and located using a three-way positioner, such that the bubble centers were consistently 10 cm below the water surface. A hydrophone was placed in a hole at the center of the tube to measure the pressure in the vicinity of the bubble(s). The resonance frequencies were identified by the peaks in the pressure versus frequency plot.

Image of FIG. 4.
FIG. 4.

Normalized natural frequencies for two equal-sized bubbles (R 10 = R 20 = 1 cm) as a function of normalized separation distance 2z/L, for bubbles (a) inside a rigid tube of r tube = 1.27 cm and L = 20 cm and (b) in an open volume. Frequencies are normalized by f 0, the natural frequency of a single bubble of radius R 0 = 1 cm in an open volume, represented by dashed line in (b). In (a), the solid lines are the results of the 3-degree-of-freedom model, and the circle markers are results from both simulations: coupled BEM-FEM and comsol acoustics model for two bubbles in a rigid tube. The dashed line represents the normalized frequency of a single bubble of radius R 0 = 1 cm situated at the same axial position as one of the two bubbles. In (b), the solid lines are calculated using Eq. (22).

Image of FIG. 5.
FIG. 5.

Comparison of normalized frequencies f/f0 versus normalized separation distance 2z/L for two different sized bubbles equidistant from the center of the tube. Three sets of curves, corresponding to R 2/R 1 = 0.5 (triangular markers), 0.75 (square markers), and 1.0 (circular marker), show both in-phase (lower) and out-of-phase (upper) frequencies. Lumped parameter model (solid line) and comsol acoustics model results for two bubbles in a rigid tube (markers) agree well when the bubbles are placed deep inside the tube.

Image of FIG. 6.
FIG. 6.

Plot of the four natural frequencies f versus elastic modulus E for two bubbles (R 10 = R 20 = 1 cm) equidistant from the tube center (z 1,z 2 = ± 1.5 cm) in a compliant tube with r tube = 1.27 cm, t tube = 0.25 cm, and L = 20 cm. Lines show the analytical results from the 5- degree-of-freedom lumped parameter model and markers show the simulation results from comsol coupled fluid-structure interaction model for two bubbles in a flexible tube. The solid lines and filled markers correspond to in-phase frequencies. The dashed lines and open markers correspond to out-of-phase frequencies.

Image of FIG. 7.
FIG. 7.

Normalized natural frequencies for two equal-sized bubbles (R 1R 2∼1.1 cm) and a single bubble (R 0∼1.1 cm) inside a stiff tube (r tube = 1.75 cm, t tube = 0.64 cm, L = 20 cm, E = 3200 MPa). The frequencies are normalized by the average of the two bubbles experimental free field natural frequencies, f 0. The solid lines correspond to the 3-degree-of- freedom model for two bubbles in a rigid tube, and the squares are from the experimental results for two bubbles in a tube. The dashed line represents the numerical prediction of the frequency of a single bubble at the same axial positions as one of the two bubbles, and the circles represent the single bubble experimental results.

Image of FIG. 8.
FIG. 8.

Normalized natural frequencies for one bubble in a compliant tube (solid lines and squares) and one bubble in a rigid tube (dashed line and circles) for R 0 = 0.78 cm, r tube = 1.27 cm, t tube = 0.32 cm, L = 20 cm. The frequencies are normalized by the experimental free field natural frequency, f 0. The solid lines are from the 3-degree-of-freedom model for one bubble in a compliant tube and the squares are the corresponding experimental results. An elastic modulus of E = 0.6 MPa in the 3-degree-of-freedom model minimized the least squared error between the predicted and measured frequencies, so was used for this plot. The dashed line is the numerical prediction from the 1 -degree-of-freedom model for one bubble in a rigid tube and the circles are the corresponding experimental results.

Image of FIG. 9.
FIG. 9.

Normalized natural frequencies for two equal-sized bubbles (R 10 = R 20 = 4 µm) as a function of normalized separation distance 2z/L, for bubbles inside a rigid tube of r tube = 5.08 µm, L = 80 µm, and t tube = 1 µm. The open and closed markers correspond to comsol model results with and without surface tension (σ = 0.0643 N/m), respectively. The lines represent the lumped parameter model for two bubbles within a tube (solid) and one bubble within a tube (dotted).

Loading

Article metrics loading...

/content/asa/journal/jasa/130/5/10.1121/1.3626135
2011-11-16
2014-04-17
Loading

Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Natural frequencies of two bubbles in a compliant tube: Analytical, simulation, and experimental results
http://aip.metastore.ingenta.com/content/asa/journal/jasa/130/5/10.1121/1.3626135
10.1121/1.3626135
SEARCH_EXPAND_ITEM