Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. T. L. Duvall, Jr., S. M. Jeffferies, J. W. Harvey, and M. A Pomerantz, “Time-distance helioseismology,” Nature (London) 362, 430432 (1993).
2. O. I. Lobkis and R. L. Weaver, “On the emergence of the Green’s function in the correlations of a diffuse field,” J. Acoust. Soc. Am. 110, 30113017 (2001).
3. M. Campillo and A. Paul, “Long-range correlations in the diffuse seismic coda,” Science 299, 547549 (2003).
4. E. Larose, L. Margerin, A. Derode, B. van Tiggelen, M. Campillo, N. Shapiro, A. Paul, L. Stehly, and M. Tanter, “Correlation of random wavefields: An interdisciplinary review,” Geophysics 71, SI11SI21 (2006).
5. P. Roux, K. G. Sabra, P. Gerstoft, W. A. Kuperman and M. C. Fehler, “P-waves from cross-correlation of seismic noise,” Geophys. Res. Lett 32, L19303 (2005).
6. N. M. Shapiro, M. Campillo, L. Stehly and M. H. Ritzwoller, “High resolution surface-wave tomography from ambient seismic noise,” Science 307, 16151618 (2005).
7. R. Snieder, “Extracting the Green’s function from the correlation of coda waves: A derivation based on stationary phase,” Phys. Rev. E 69, 046610 (2004).
8. K. Wapenaar, “Retrieving the elastodynamic Green’s function of an arbitrary inhomogeneous medium by cross correlation,” Phys. Rev. Lett. 93, 254301 (2004).
9. T. Gallot, S. Catheline, P. Roux, J. Brum, N. Benech, and C. Negreira, “Passive elastography: shear-wave tomography from physiological-noise correlation in soft tissues,” IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 58, 1122 (2011).
10. K.G. Sabra, P. Gerstoft, P. Roux, W. A. Kuperman, and M. C. Fehler, “Surface wave tomography from microseisms in Southern California,” Geophys. Res. Lett. 32, L14311 (2005).
11. P. Gouédard, L. Stehly, F. Brenguier, M. Campillo, Y. Colin de Verdiere, E. Larose, L. Margerin, P. Roux, F. J. Sanchez-Sesma, N. M. Shapiro, and R. L. Weaver, “Cross-correlation of random fields: Mathematical approach and applications,” Geophys. Prospect. 56, 375393 (2008).
12. P. Roux, “Passive seismic imaging with directive ambient noise: Application to surface waves and the San Andreas Fault in Parkfield, CA,” Geophys. J. Int. 179, 367373 (2009).
13. L. Stehly, N. Shapiro, and M. Campillo, “A study of the seismic noise from its long-range correlation properties,” J. Geophys. Res. 111, 112 (2006).
14. P. Gouédard, P. Roux, M. Campillo, and A. Verdel, “Convergence of the two-point correlation function toward the Green’s function in the context of a seismic-prospecting data set,” Geophysics 73, V47V53 (2008).
15. R. Weaver, B. Froment, and M. Campillo, “On the correlation of non-isotropically distributed ballistic scalar diffuse waves,” J. Acoust. Soc. Am. 126, 18171826 (2009).
16. H. Douma and R. Snieder, “Correcting for bias due to noise in coda wave interferometry,” Geophys. J. Int. 164, 99108 (2006).
17. A. Curtis and D. Halliday, “Directional balancing for seismic and general wavefield interferometry,” Geophysics 75, SA1SA14 (2010).
18. A. Bakulin and R. Calvert, “The virtual source method: Theory and case study,” Geophysics 71(4), SI139SI150 (2006).
19. K. Mehta, A. Bakulin, J. Sheiman, R. Calvert, and R. Snieder, “Improving the virtual source method by wavefield separation,” Geophysics 72, V79 (2007).
20. K. Wapenaar, J. van der Neut, and E. Ruigrok, “Passive seismic interferometry by multidimensional deconvolution,” Geophysics 73, A51 (2008).
21. L. Stehly, M. Campillo, B. Froment, and R.L. Weaver, “Reconstructing Green’s function by correlation of the coda of the correlation C3 of ambient seismic noise,” J. Geophys. Res. 113, B11306 (2008).
22. M. Tanter, J.-L. Thomas, and M. Fink, “Time reversal and the inverse filter,” J. Acoust. Soc. Am. 108, 223234 (2000).
23. M. Fink, “Time reversed acoustics,” Phys. Today 50(3), 3440 (1997).
24. A. Derode, E. Larose, M. Campillo, and M. Fink, “How to estimate the Green’s function of a heterogeneous medium between two passive sensors ? Application to acoustic wave,” Appl. Phys. Lett. 83, 3055 (2003).
25. A. Derode, E. Larose, M. Tanter, J. de Rosny, A. Tourin, M. Campillo, and M. Fink, “Recovering the Green’s function from field-field correlations in an open scattering medium,” J. Acoust. Soc. Am. 113, 29732976 (2003).
26. M. Tanter, J. F. Aubry, J. Gerber, J. L. Thomas, and M. Fink, “Optimal focusing by spatiotemporal inverse filter. I. Basic principles,” J. Acoust. Soc. Am. 110, 3747 (2001).
27. J. F. Aubry, M. Tanter, M. Pernot, J.L. Thomas and M. Fink, “Experimental demonstration of noninvasive transskull adaptive focusing based on prior computed tomography scans,” J. Acoust. Soc. Am. 113, 8493 (2003).
28. F. Vignon, J. F. Aubry, M. Tanter, A. Margoum, and M. Fink, “Adaptive focusing for transcranial ultrasound imaging using dual arrays,” J. Acoust. Soc. Am. 120, 27372745 (2006).
29. S. Yon, M. Tanter, and M. Fink, “Sound focusing in rooms. II. The spatio-temporal inverse filter,” J. Acoust. Soc. Am. 114, 30443052 (2003).
30. G. C. Herman and C. Perkins, “Predictive removal of scattered noise,” Geophysics 71, V41V49 (2006).

Data & Media loading...


Article metrics loading...



Passive methods for the recovery of Green’s functions from ambient noise require strong hypotheses, including isotropic distribution of the noisesources. Very often, this distribution is nonisotropic, which introduces bias in the Green’s functionreconstruction. To minimize this bias, a spatiotemporal inverse filter is proposed. The method is tested on a directive noise field computed from an experimental active seismic data set. The results indicate that the passive inverse filter allows the manipulation of the spatiotemporal degrees of freedom of a complex wave field, and it can efficiently compensate for the noise wavefield directivity.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd