1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Mapping cumulative noise from shipping to inform marine spatial planning
Rent:
Rent this article for
Access full text Article
/content/asa/journal/jasa/132/5/10.1121/1.4758779
1.
1. W. Ellison, B. Southall, C. Clark, and A. Frankel, “A new context-based approach to assess marine mammal behavioral responses to anthropogenic sounds,” Conserv. Biol. 26(1), 2128 (2012).
http://dx.doi.org/10.1111/j.1523-1739.2011.01803.x
2.
2. B. S. Halpern, S. Walbridge, K. A. Selkoe, C. V. Kappel, F. Micheli, C. D'Agrosa, J. F. Bruno, K. S. Casey, C. Ebert, H. E. Fox, R. Fujita, D. Heinemann, H. S. Lenihan, E. M. P. Madin, M. T. Perry, E. R. Selig, M. Spalding, R. Steneck, and R. Watson, “A global map of human impact on marine ecosystems,” Science 319, 948952 (2008).
http://dx.doi.org/10.1126/science.1149345
3.
3. M. L. Tasker, M. Amundin, M. Andre, A. D. Hawkins, W. Lang, T. Merck, A. Scholik- Schlomer, J. Teilman, F. Thomsen, S. Werner, and M. Zakharia, “Marine Strategy Framework Directive: Task Group 11 Report: Underwater noise and other forms of energy,” European Commission and International Council for the Exploration of the Sea, Luxembourg, 2010.
4.
4. J. E. Breeding, L. A. Pflug, M. Bradley, M. Herbert, and M. Wooten, RANDI 3.1 User's Guide (US Naval Research Laboratory, White Oak, MD, 1994).
5.
5. M. F. McKenna, D. Ross, S. M. Wiggins, and J. A. Hildebrand, “Underwater radiated noise from modern commercial ships,” J. Acoust. Soc. Am. 131(1), 92103 (2012).
http://dx.doi.org/10.1121/1.3664100
6.
6. L. M. Brekhovskikh and Y. P. Lysanov, Fundamentals of Ocean Acoustics, 3rd ed. (Springer, New York, 2003).
7.
7. P. Scrimger and R. M. Heitmeyer, “Acoustic source-level measurements for a variety of merchant ships,” J. Acoust. Soc. Am. 89(2), 691699 (1991).
http://dx.doi.org/10.1121/1.1894628
8.
8. U.S. Department of Commerce, “Two-minute Gridded Global Relief Data (ETOPO2v2),” National Oceanic and Atmospheric Administration, National Geophysical Data Center (2006).
9.
9. P. Wessel and W. H. F. Smith, “A global self-consistent, hierarchical, high-resolution shoreline database,” J. Geophys. Res. 101(B4), 87418743, doi:10.1029/96JB00104 (1996).
http://dx.doi.org/10.1029/96JB00104
10.
10. R. E. François and G. R. Garrison,“Sound absorption based on ocean measurements: Part I: Pure water and magnesium sulphate contributions,” J. Acoust. Soc. Am. 72(3), 896907 (1982).
http://dx.doi.org/10.1121/1.388170
11.
11. R. E. François and G. R. Garrison, “Sound absorption based on ocean measurements: Part II: Boric acid contribution and equation for total absorption,” J. Acoust. Soc. Am. 72(6), 18791890 (1982).
12.
12. M. D. Collins, R. J. Cederberg, D. B. King, and S. Chin-Bing, “Comparison of algorithms for solving parabolic wave equations,” J. Acoust. Soc. Am. 100(1), 178182 (1996).
http://dx.doi.org/10.1121/1.415921
13.
13. D. E. Howes, M. A. Zacharias, and J. R. Harper, British Columbia Marine Ecological Classification: Marine Ecosections and Ecounits (Province of British Columbia Resource Information Standard Committee, Victoria, BC, 1997).
14.
14. M. J. Buckingham, “Compressional and shear wave properties of marine sediments: Comparisons between theory and data,” J. Acoust. Soc. Am. 117(1), 137152 (2005).
http://dx.doi.org/10.1121/1.1810231
15.
15. J. V. Barrie and B. Bornhold, “Surficial geology of Hecate Strait, British Columbia contintental shelf,” Can. J. Earth Sci. 26, 12411254 (1989).
http://dx.doi.org/10.1139/e89-105
16.
16. J. V. Barrie and P. R. Hill, “Holocene faulting on a tectonic margin: Georgia Basin, British Columbia, Canada,” Geo-Mar. Lett. 24, 8696 (2004).
http://dx.doi.org/10.1007/s00367-003-0166-6
17.
17. J. V. Barrie, J. L. Luternauer, K. W. Conway, and A. Caltagirone, Surficial Geology of the Queen Charlotte Basin, GSC Open Files 2193, 2195, 2196, 2197, Geological Survey of Canada, 1990.
18.
18. B. Bornhold and J. Barrie, “Surficial sediments on the Western Canadian continental shelf,” Cont. Shelf Res. 11, 685699 (1991).
http://dx.doi.org/10.1016/0278-4343(91)90074-G
19.
19. A. O. MacGillivray, An Acoustic Modelling Study of Seismic Airgun Noise in Queen Charlotte Basin (University of Victoria, B.C., 2006).
20.
20. M. R. Carnes, “Description and Evaluation of GDEM-V 3.0,” NRL Memorandum Report 7330-09-9165 (US Naval Research Laboratory, White Oak, MD, 2009).
21.
21. S. Clay and H. Medwin, Acoustical Oceanography (Wiley, New York, 1977).
22.
22. M. Austin, A. MacGillivray, D. Hannay, and M. Zykov, “Enbridge Northern Gateway Project,” Marine Acoustics Technical Data Report, JASCO Applied Sciences, Victoria, B.C. (2006). The report is available from the Canadian Environmental Assessment Agency (CEAA) registry, http://www.ceaa.gc.ca/050/document-eng.cfm?document=46395.
23.
23. L. Hatch, C. Clark, R. Merrick, S. Van Parijs, D. Ponirakis, K. Schwehr, M. Thompson, and D. Wiley, “Characterizing the relative contributions of large vessels to total ocean noise fields: A Case study using the Gerry E. Studds Stellwagen Bank National Marine Sanctuary,” Environ. Manage. (N.Y.) 42(5), 735752 (2008).
http://aip.metastore.ingenta.com/content/asa/journal/jasa/132/5/10.1121/1.4758779
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(Color online) (a) Total hours of shipping for the year 2008. (b) Mean 1/3-octave band source levels for the five vessel length classes.

Image of FIG. 2.

Click to view

FIG. 2.

(Color online) (a) Cumulative sound exposure level from vessel traffic from Jan to Dec 2008. (b) Areas where the estimated annual average sound pressure level (SPLrms) exceeded the EU Marine Strategy Framework Directive of 100 dB (SPLrms) in 1/3-octave bands centered on 63 or 125 Hz.

Image of FIG. 3.

Click to view

FIG. 3.

(Color online) Transmission loss versus range statistics at six frequencies, as computed from the ensemble of PE model transects. Solid lines show the 5th, 25th, 50th, 75th, and 95th percentile transmission loss contours. Crosses are transmission loss measurements. Dashed line indicates spherical spreading transmission loss.

Tables

Generic image for table

Click to view

TABLE I.

Modeled properties for the five vessel length classes in the shipping traffic database.

Loading

Article metrics loading...

/content/asa/journal/jasa/132/5/10.1121/1.4758779
2012-10-16
2014-04-19

Abstract

Including ocean noise in marine spatial planning requires predictions of noise levels on large spatiotemporal scales. Based on a simple sound transmission model and ship track data (Automatic Identification System, AIS), cumulative underwater acoustic energy from shipping was mapped throughout 2008 in the west Canadian Exclusive Economic Zone, showing high noise levels in critical habitats for endangered resident killer whales, exceeding limits of “good conservation status” under the EU Marine Strategy Framework Directive. Error analysis proved that rough calculations of noise occurrence and propagation can form a basis for management processes, because spending resources on unnecessary detail is wasteful and delays remedial action.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/132/5/1.4758779.html;jsessionid=17f7ef4cdxik6.x-aip-live-01?itemId=/content/asa/journal/jasa/132/5/10.1121/1.4758779&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Mapping cumulative noise from shipping to inform marine spatial planning
http://aip.metastore.ingenta.com/content/asa/journal/jasa/132/5/10.1121/1.4758779
10.1121/1.4758779
SEARCH_EXPAND_ITEM