Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. T. J. Ulrich, A. M. Sutin, T. Claytor, P. Papin, P.-Y. Le Bas, and J. A. TenCate, “ The time reversed elastic nonlinearity diagnostic applied to evaluation of diffusion bonds,” Appl. Phys. Lett. 93, 151914 (2008).
2. T. J. Ulrich, P. A. Johnson, and R. A. Guyer, “ Interaction dynamics of elastic waves with a complex nonlinear scatterer through the use of a time reversal mirror,” Phys. Rev. Lett. 98, 104301 (2007).
3. P. A. Johnson, “ New wave in acoustic testing,” Mater. World 7(9 ), 544546 (1999).
4. K. Van Den Abeele, P. Y. Le Bas, B. Van Damme, and T. Katkowski, “ Quantification of material nonlinearity in relation to microdamage density using nonlinear reverberation spectroscopy: Experimental and theoretical study,” J. Acoust. Soc. Am. 126(3 ), 963972 (2009).
5. M. Fink, “ Time reversed acoustics,” Phys. Today 50(3 ), 3440 (1997).
6. B. E. Anderson, M. Griffa, C. Larmat, T. J. Ulrich, and P. A. Johnson, “ Time reversal,” Acoust. Today 4, 515 (2008).
7. K. van den Abeele, B. van Damme, S. Delrue, and O. Bou Matar, “ Application of the chaotic cavity transducer concept for imaging in nonreverberant media,” J. Acoust. Soc. Am. 127, 1947 (2010).
8. B. van Damme, K. van den Abeele, Y. Li, and O. Bou Matar, “ Time reversed acoustics techniques for elastic imaging in reverberant and nonreverberant media: An experimental study of the chaotic cavity transducer concept,” J. Appl. Phy. 109, 104910 (2011).
9. T. J. Ulrich, B. E. Anderson, P. Y. Le Bas, C. Payan, J. Douma, and R. Snieder, “ Improving time reversal focusing through deconvolution: 20 questions,” Proc. Meet. Acoust. 16, 045015 (2012).
10. T. J. Ulrich, K. Van Den Abeele, P.-Y. Le Bas, M. Griffa, B. E. Anderson, and R. A. Guyer, “ Three component time reversal: Focusing vector components using a scalar source,” J. Appl. Phys. 106, 113504 (2009).

Data & Media loading...


Article metrics loading...



This paper describes the principle behind a high amplitude non-contact acoustic source based on the principle of time reversal (TR), a process to focus energy at a point in space. By doing the TR in an air filled, hollow cavity and using a laser vibrometer in the calibration of the system, a non-contact source may be created. This source is proven to be more energetic than an off the shelf focused ultrasound transducer. A scaled up version of the proposed source has the potential to allow nondestructive evaluation processes that require high amplitude, such as nonlinear elastic wave spectroscopy (NEWS) techniques.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd