Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/asa/journal/jasa/134/4/10.1121/1.4818936
1.
1. M. J. Buckingham and S. A. S. Jones, “ A new shallow ocean technique for determining the critical angle of the sea bed from the vertical directionality of the ambient noise in the water column,” J. Acoust. Soc. Am. 81(4), 938946 (1987).
http://dx.doi.org/10.1121/1.394573
2.
2. C. H. Harrison and D. G. Simons, “ Geoacoustic inversion of ambient noise: A simple method,” J. Acoust. Soc. Am. 112(4), 13771389 (2002).
http://dx.doi.org/10.1121/1.1506365
3.
3. C. H. Harrison, “ Sub-bottom profiling using ocean ambient noise,” J. Acoust. Soc. Am. 115(4), 15051515 (2004).
http://dx.doi.org/10.1121/1.1645854
4.
4. M. Siderius, C. H. Harrison, and M. B. Porter, “ A passive fathometer technique for imaging seabed layering using ambient noise,” J. Acoust. Soc. Am. 120(3), 13151323 (2006).
http://dx.doi.org/10.1121/1.2227371
5.
5. N. M. Carbone, G. B. Deane, and M. J. Buckingham, “ Estimating the compressional and shear wave speeds of a shallow water seabed from the vertical coherence of ambient noise in the water column,” J. Acoust. Soc. Am. 103(2), 801813 (1997).
6.
6. F. Desharnais, M. L. Drover, and C. A. Gillard, “ Acoustics 2002 – Innovations in Acoustics and Vibration,” in Annual Conference of the Australian Acoustical Society, Adelaide, Australia (13–15 November 2002).
7.
7. C. W. Holland, “ Geoacoustic inversion for fine grained sediments,” J. Acoust. Soc. Am. 111(4), 15601564 (2002).
http://dx.doi.org/10.1121/1.1461836
8.
8. Y. Jiang and N. R. Chapman, “ Geoacoustic inversion of broadband data by matched beam processing,” J. Acoust. Soc. Am. 119(6), 37073716 (2006).
http://dx.doi.org/10.1121/1.2195114
9.
9. Y. Jiang, N. R. Chapman, and M. Badiey, “ Quantifying the uncertainty of geoacoustic parameter estimates for the new jersey shelf by inverting air gun data,” J. Acoust. Soc. Am. 121(4), 18791894 (2007).
http://dx.doi.org/10.1121/1.2642137
10.
10. T. C. Yang, Kwang Yoo, and L. T. Fialkowski, “ Subbottom profiling using a ship towed line array and geoacoustic inversion,” J. Acoust. Soc. Am. 122(6), 33383352 (2007).
http://dx.doi.org/10.1121/1.2799495
11.
11. Jie Yang, Darrell R. Jackson, and Dajun Tang, “ Mid-frequency geoacoustic inversion using bottom loss data from the Shallow Water 2006 Experiment,” J. Acoust. Soc. Am. 129(4), 2426 (2011).
http://dx.doi.org/10.1121/1.3587932
12.
12. M. Siderius and C. Harrison, “ High frequency geoacoustic inversion of ambient noise data using short arrays,” AIP Conf. Proc. 728, 2231 (2004).
http://dx.doi.org/10.1063/1.1842993
13.
13. C. H. Harrison, “ Formulas for ambient noise level and coherence,” J. Acoust. Soc. Am. 99(4), 20552066 (1995).
14.
14. E. D. Hamilton, “ Geoacoustic modeling of the sea floor,” J. Acoust. Soc. Am. 68(5), 13131340 (1980).
http://dx.doi.org/10.1121/1.385100
15.
15. F. B. Jensen, W. A. Kuperman, M. B. Porter, and H. Schmidt, Computational Ocean Acoustics (Springer, New York, 1993), pp. 3644.
16.
16. C. H. Harrison, “ Noise directionality for surface sources in range dependent environments,” J. Acoust. Soc. Am. 102(5), 26552662 (1997).
http://dx.doi.org/10.1121/1.420319
http://aip.metastore.ingenta.com/content/asa/journal/jasa/134/4/10.1121/1.4818936
Loading
/content/asa/journal/jasa/134/4/10.1121/1.4818936
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/jasa/134/4/10.1121/1.4818936
2013-09-17
2016-09-27

Abstract

Ambient noise measurements at three sites along the Indian continental shelf, with different water column and seabed, are analyzed to derive vertical directionality and further estimation of seabed characteristics. Directionality pattern is interpreted using features in the sound speed profiles, in terms of noise notch, surface duct, surface bottom reflections, direct arrivals, and high bottom loss arrivals. Reflection loss estimated from the field directionality is seen to be the same for a particular site and gives an estimate of the sea bottom. Seabed characteristics such as critical angle and reflection coefficient from field directionality correlate well with theoretical estimation using ground truths.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/134/4/1.4818936.html;jsessionid=Tz_lpHIWcD-3XSYo6cV8RPde.x-aip-live-06?itemId=/content/asa/journal/jasa/134/4/10.1121/1.4818936&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=asadl.org/jasa/134/4/10.1121/1.4818936&pageURL=http://scitation.aip.org/content/asa/journal/jasa/134/4/10.1121/1.4818936'
Right1,Right2,Right3,