Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/asa/journal/jasa/134/4/10.1121/1.4820468
1.
1. Aulanier, F. , Nicolas, B. , Roux, P. , and Mars, J. I. (2011). “ Direction-of-arrival, direction-of-departure and travel-time sensitivity kernels obtained through double beamforming in shallow water,” in UAM Proceedings 2011, pp. 453460.
2.
2. Aulanier, F. , Nicolas, B. , Roux, P. , and Mars, J. I. (2013). “ Time-angle sensitivity kernels for sound-speed perturbations in a shallow ocean,” J. Acoust. Soc. Am. 134(1), 8896.
http://dx.doi.org/10.1121/1.4809650
3.
3. Bowlin, J. (1991). “ Generating eigenray tubes from two solutions of the wave equation,” J. Acoust. Soc. Am. 89(6), 26632669.
http://dx.doi.org/10.1121/1.400705
4.
4. Collins, M. D. (1993). “ A split-step Padé solution for the parabolic equation method,” J. Acoust. Soc. Am. 93, 17361742.
http://dx.doi.org/10.1121/1.406739
5.
5. Cornuelle, B. D. (1985). “ Simulations of acoustic tomography array performance with untracked or drifting sources and receivers,” J. Geophys. Res. 90(3), 90799088, doi:10.1029/JC090iC05p09079.
http://dx.doi.org/10.1029/JC090iC05p09079
6.
6. Dahlen, F. A. (2004). “ Resolution limit of traveltime tomography,” Geophys. J. Int. 157(1), 315331.
http://dx.doi.org/10.1111/j.1365-246X.2004.02214.x
7.
7. Devaney, A. J. (1984). “ Geophysical diffraction tomography,” IEEE Trans. Geosci. Remote Sens. 22(1), 313.
8.
8. Hansen, P. (1992). “ Analysis of discrete ill-posed problems by means of the L-curve,” SIAM Rev. 34(4), 561580.
http://dx.doi.org/10.1137/1034115
9.
9. Hansen, P. , and O'Leary, D. (1993). “ The use of the L-curve in the regularization of discrete ill-posed problems,” SIAM J. Sci. Comput. 14(6), 14871503.
http://dx.doi.org/10.1137/0914086
10.
10. Howe, B. M. , Worcester, P. , and Spindel, R. (1987). “ Ocean acoustic tomography: Mesoscale velocity,” J. Geophys. Res. 92, 37853805, doi:10.1029/JC092iC04p03785.
http://dx.doi.org/10.1029/JC092iC04p03785
11.
11. Iturbe, I. , Roux, P. , Nicolas, B. , Virieux, J. , and Mars, J. I. (2009). “ Shallow-water acoustic tomography performed from a double-beamforming algorithm: Simulation results,” IEEE J. Ocean. Eng. 34(2), 140149.
http://dx.doi.org/10.1109/JOE.2009.2015166
12.
12. Jesus, S. M. , Soares, C. , Coelho, E. , and Picco, P. (2006). “ An experimental demonstration of blind ocean acoustic tomography,” J. Acoust. Soc. Am. 119(3), 14201431.
http://dx.doi.org/10.1121/1.2165070
13.
13. Marandet, C. , Roux, P. , Nicolas, B. , and Mars, J. I. (2011). “ Target detection and localization in shallow water: An experimental demonstration of the acoustic barrier problem at the laboratory scale,” J. Acoust. Soc. Am. 129(1), 8597.
http://dx.doi.org/10.1121/1.3514503
14.
14. Marquering, H. , Nolet, G. , and Dahlen, F. A. (1998). “ Three-dimensional waveform sensitivity kernels,” Geophys. J. Int. 132(3), 521534.
http://dx.doi.org/10.1046/j.1365-246X.1998.00426.x
15.
15. Munk, W. , and Wunsch, C. (1979). “ Ocean acoustic tomography: A scheme for large scale monitoring,” Deep-Sea Res., Part A 26(2), 123161.
http://dx.doi.org/10.1016/0198-0149(79)90073-6
16.
16. Nicolas, B. , Iturbe, I. , Roux, P. , and Mars, J. I. (2008). “ Double formation de voies pour la séparation et l'identification d'ondes: Applications en contexte fortement bruité et à la campagne FAF03” (“Double-beamforming for wave separation and identification: Applications in high-noise level context and on FAF03 at-sea experiment data”), TS. Trait. Signal 25(4), 293304.
17.
17. Rodriguez, O. , and Jesus, S. (2000). “ Physical limitations of travel-time-based shallow water tomography,” J. Acoust. Soc. Am. 108, 6, 28162822.
18.
18. Roux, P. (2013). “ Acoustical tomography in the shallow water ocean: Dream or reality?J. Acoust. Soc. Am. 133, 3040730416.
19.
19. Roux, P. , Cornuelle, B. D. , Kuperman, W. A. , and Hodgkiss, W. S. (2008). “ The structure of raylike arrivals in a shallow-water waveguide,” J. Acoust. Soc. Am. 124(6), 34303439.
http://dx.doi.org/10.1121/1.2996330
20.
20. Roux, P. , Iturbe, I. , Nicolas, B. , Virieux, J. , and Mars, J. I. (2011). “ Travel-time tomography in shallow water: Experimental demonstration at an ultrasonic scale,” J. Acoust. Soc. Am. 130(3), 12321241.
http://dx.doi.org/10.1121/1.3621271
21.
21. Roux, P. , Kuperman, W. A. , Cornuelle, B. D. , Aulanier, F. , Hodgkiss, W. S. , and Song, H. C. (2013). “ Analyzing sound speed fluctuations in shallow water from group-velocity versus phase-velocity data representation,” J. Acoust. Soc. Am. 133, 19451952.
http://dx.doi.org/10.1121/1.4792354
22.
22. Sarkar, J. , Marandet, C. , Roux, P. , Walker, S. , Cornuelle, B. D. , and Kuperman, W. A. (2012). “ Sensitivity kernel for surface scattering in a waveguide,” J. Acoust. Soc. Am. 131(1), 111119.
http://dx.doi.org/10.1121/1.3665999
23.
23. Skarsoulis, E. K. , and Cornuelle, B. D. (2004). “ Travel-time sensitivity kernels in ocean acoustic tomography,” J. Acous. Soc. Am. 116(1), 228238.
24.
24. Spiesberger, J. , Spindel, R. , and Metzger, K. (1980). “ Stability and identification of ocean acoustic multipaths,” J. Acoust. Soc. Am. 67, 20112017.
http://dx.doi.org/10.1121/1.384441
25.
25. Tarantola, A. (2005). Inverse Problem Theory and Methods for Model Parameter Estimation (Elsevier Science, New York), p. 342.
26.
26. Williamson, P. R. (1991). “ A guide to the limits of resolution imposed by scattering in ray tomography,” Geophysics 56(2), 202207.
http://dx.doi.org/10.1190/1.1443032
http://aip.metastore.ingenta.com/content/asa/journal/jasa/134/4/10.1121/1.4820468
Loading
/content/asa/journal/jasa/134/4/10.1121/1.4820468
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/jasa/134/4/10.1121/1.4820468
2013-09-17
2016-12-04

Abstract

For shallow-water waveguides and mid-frequency broadband acoustic signals, ocean acoustic tomography (OAT) is based on the multi-path aspect of wave propagation. Using arrays in emission and reception and advanced array processing, every acoustic arrival can be isolated and matched to an eigenray that is defined not only by its travel time but also by its launch and reception angles. Classically, OAT uses travel-time variations to retrieve sound-speed perturbations; this assumes very accurate source-to-receiver clock synchronization. This letter uses numerical simulations to demonstrate that launch-and-reception-angle tomography gives similar results to travel-time tomography without the same requirement for high-precision synchronization.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/134/4/1.4820468.html;jsessionid=HHgtywCN_0CfJnAEowFKYsBE.x-aip-live-03?itemId=/content/asa/journal/jasa/134/4/10.1121/1.4820468&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=asadl.org/jasa/134/4/10.1121/1.4820468&pageURL=http://scitation.aip.org/content/asa/journal/jasa/134/4/10.1121/1.4820468'
Right1,Right2,Right3,