1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Correlations of linear and nonlinear ultrasound parameters with density and microarchitectural parameters in trabecular bone
Rent:
Rent this article for
Access full text Article
/content/asa/journal/jasa/134/5/10.1121/1.4822420
1.
1. D. Hans and M. A. Krieg, “ The clinical use of quantitative ultrasound (QUS) in the detection and management of osteoporosis,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 15291538 (2008).
http://dx.doi.org/10.1109/TUFFC.2008.829
2.
2. J. A. Kanis, E. V. McCloskey, H. Johansson, A. Oden, L. J. Melton III, and N. Khaltaev, “ A reference standard for the description of osteoporosis,” Bone 42, 467475 (2008).
http://dx.doi.org/10.1016/j.bone.2007.11.001
3.
3. P. H. F. Nicholson, R. Muller, G. Lowet, X. G. Cheng, T. Hildebrand, P. Ruegsegger, G. Van Der Perre, J. Dequeker, and S. Boonen, “ Do quantitative ultrasound measurements reflect structure independently of density in human vertebral cancellous bone?,” Bone 23, 425431 (1998).
http://dx.doi.org/10.1016/S8756-3282(98)00128-8
4.
4. P. Laugier, “ Instrumentation for in vivo ultrasonic characterization of bone strength,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 11791196 (2008).
http://dx.doi.org/10.1109/TUFFC.2008.782
5.
5. R. Barkmann, S. Dencks, P. Laugier, F. Padilla, K. Brixen, J. Ryg, A. Seekamp, L. Mahlke, A. Bremer, M. Heller, and C. C. Gluer, “ Femur ultrasound (FemUS)-first clinical results on hip fracture discrimination and estimation of femoral BMD,” Osteoporos. Int. 21, 969976 (2010).
http://dx.doi.org/10.1007/s00198-009-1037-4
6.
6. P. H. F. Nicholson, R. Muller, X. G. Cheng, P. Ruegsegger, G. Van Der Perre, J. Dequeker, and S. Boonen, “ Quantitative ultrasound and trabecular architecture in the human calcaneus,” J. Bone Miner. Res. 16, 1886 (2001).
http://dx.doi.org/10.1359/jbmr.2001.16.10.1886
7.
7. K. A. Wear and D. W. Armstrong, “ Relationships among calcaneal backscatter, attenuation, sound speed, hip bone mineral density, and age in normal adult women,” J. Acoust. Soc. Am. 110, 573578 (2001).
http://dx.doi.org/10.1121/1.1378343
8.
8. S. Chaffai, F. Peyrin, S. Nuzzo, R. Porcher, G. Berger, and P. Laugier, “ Ultrasonic characterization of human cancellous bone using transmission and backscatter measurements: Relationships to density and microstructure,” Bone 30, 229237 (2002).
http://dx.doi.org/10.1016/S8756-3282(01)00650-0
9.
9. F. Jenson, F. Padilla, V. Bousson, C. Bergot, J.-D. Laredo, and P. Laugier, “ In vitro ultrasonic characterization of human cancellous femoral bone using transmission and backscatter measurements: Relationships to bone mineral density,” J. Acoust. Soc. Am. 119, 654663 (2006).
http://dx.doi.org/10.1121/1.2126936
10.
10. F. Padilla, F. Jenson, V. Bousson, F. Peyrin, and P. Laugier, “ Relationships of trabecular bone structure with quantitative ultrasound parameters: In vitro study on human proximal femur using transmission and backscatter measurements,” Bone 42, 11931202 (2008).
http://dx.doi.org/10.1016/j.bone.2007.10.024
11.
11. K. A. Wear, S. Nagaraja, M. L. Dreher, and S. L. Gibson, “ Relationships of quantitative ultrasound parameters with cancellous bone microstructure in human calcaneus in vitro,” J. Acoust. Soc. Am. 131, 16051612 (2012).
http://dx.doi.org/10.1121/1.3672701
12.
12. D. Donskoy and A. Sutin, “ Nonlinear acoustic parameter of trabecular bone,” J. Acoust. Soc. Am. 102, 3155 (1997).
http://dx.doi.org/10.1121/1.420727
13.
13. H. E. Engan, K. A. Ingebrigtsen, K. G. Oygarden, E. K. Hagen, and L. Hoff, “ Nonlinear ultrasound detection of osteoporosis,” in Proceedings of the IEEE Ultrasonics Symposium (2006), pp. 20962099.
14.
14. M. Muller, D. Mitton, M. Talmant, P. Johnson, and P. Laugier, “ Nonlinear ultrasound can detect accumulated damage in human bone,” J. Biomech. 41, 10621068 (2008).
http://dx.doi.org/10.1016/j.jbiomech.2007.12.004
15.
15. G. Renaud, S. Calle, J.-P. Remenieras, and M. Defontaine, “ Exploration of trabecular bone nonlinear elasticity using time-of-flight modulation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 14971507 (2008).
http://dx.doi.org/10.1109/TUFFC.2008.825
16.
16. K. Zacharias, E. Balabanidou, I. Hatzokos, I. T. Rekanos, and A. Trochidis, “ Microdamage evaluation in human trabecular bone based on nonlinear ultrasound vibro-modulation (NUVM),” J. Biomech. 42, 581586 (2009).
http://dx.doi.org/10.1016/j.jbiomech.2008.12.018
17.
17. H. Moreschi, S. Calle, S. Guerard, D. Mitton, G. Renaud, and M. Defontaine, “ Monitoring trabecular bone microdamage using a dynamic acousto-elastic testing method,” Proc. Inst. Mech. Eng., Part H: J. Eng. Med. 225, 114 (2010).
18.
18. K. I. Lee, “ Feasibility of bone assessment by using the nonlinear parameter in trabecular bone,” J. Korean Phys. Soc. 62, 11081113 (2013).
http://dx.doi.org/10.3938/jkps.62.1108
19.
19. W. N. Cobb, “ Finite amplitude method for the determination of the acoustic nonlinearity parameter B/A,” J. Acoust. Soc. Am. 73, 15251531 (1983).
http://dx.doi.org/10.1121/1.389413
20.
20. F. Dong, E. L. Madsen, M. C. MacDonald, and J. A. Zagzebski, “ Nonlinearity parameter for tissue-mimicking materials,” Ultrasound Med. Biol. 25, 831838 (1999).
http://dx.doi.org/10.1016/S0301-5629(99)00016-2
21.
21. K. A. Wear, “ Group velocity, phase velocity, and dispersion in human calcaneus in vivo,” J. Acoust. Soc. Am. 121, 24312437 (2007).
http://dx.doi.org/10.1121/1.2697436
22.
22. K. I. Lee and M. J. Choi, “ Frequency-dependent attenuation and backscatter coefficients in bovine trabecular bone from 0.2 to 1.2 MHz,” J. Acoust. Soc. Am. 131, EL67EL73 (2012).
23.
23. P. Ruegsegger, B. Koller, and R. Muller, “ A microtomographic system for the nondestructive evaluation of bone architecture,” Calcif. Tissue Int. 58, 2429 (1996).
http://dx.doi.org/10.1007/BF02509542
24.
24. T. Hildebrand, A. Laib, R. Muller, J. Dequeker, and P. Ruegsegger, “ Direct three-dimensional morphometric analysis of human cancellous bone: Microstructural data from spine, femur, iliac crest, and calcaneus,” J. Bone Miner. Res. 14, 11671174 (1999).
http://dx.doi.org/10.1359/jbmr.1999.14.7.1167
http://aip.metastore.ingenta.com/content/asa/journal/jasa/134/5/10.1121/1.4822420
Loading
/content/asa/journal/jasa/134/5/10.1121/1.4822420
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/jasa/134/5/10.1121/1.4822420
2013-10-10
2014-09-19

Abstract

In the present study, correlations of linear and nonlinear ultrasound parameters (speed of sound, normalized broadband ultrasound attenuation, and nonlinear parameter ) with bone mineral density and microarchitectural parameters were investigated in 28 bovine femoral trabecular bone samples . All three ultrasound parameters exhibited relatively high correlation coefficients with the indexes of bone quantity (bone mineral density and bone volume fraction) and lower correlation coefficients with the remaining microarchitectural parameters. These results suggest that , in addition to speed of sound and attenuation, may have potential as an index for the assessment of bone status and osteoporosis.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/134/5/1.4822420.html;jsessionid=2ojkmq5vl65n4.x-aip-live-06?itemId=/content/asa/journal/jasa/134/5/10.1121/1.4822420&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Correlations of linear and nonlinear ultrasound parameters with density and microarchitectural parameters in trabecular bone
http://aip.metastore.ingenta.com/content/asa/journal/jasa/134/5/10.1121/1.4822420
10.1121/1.4822420
SEARCH_EXPAND_ITEM